Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadejda Beliakova-Bethell is active.

Publication


Featured researches published by Nadejda Beliakova-Bethell.


Journal of Virology | 2002

Ty3 Integrase Is Required for Initiation of Reverse Transcription

M. Henrietta Nymark-McMahon; Nadejda Beliakova-Bethell; Jean-Luc Darlix; Stuart F. J. Le Grice; Suzanne Sandmeyer

ABSTRACT The integrase (IN) encoded by the Saccharomyces cerevisiae retroviruslike element Ty3 has features found in retrovirus IN proteins including the catalytic triad, an amino-terminal zinc-binding motif, and a nuclear localization sequence. Mutations in the amino- and carboxyl-terminal domains of Ty3 IN cause reduced accumulation of full-length cDNA in the viruslike particles. We show that the reduction in cDNA is accompanied by reduced amounts of early intermediates such as minus-strand, strong-stop DNA. Expression of a capsid (CA)-IN fusion protein (CA-IN) complemented catalytic site and nuclear localization mutants, but not DNA mutants. However, expression of a fusion of CA, reverse transcriptase (RT), and IN (CA-RT-IN) complemented transposition of catalytic site and nuclear localization signal mutants, increased the amount of cDNA in some of the mutants, and complemented transposition of several mutants to low frequencies. Expression of a CA-RT-IN protein with a Ty3 IN catalytic site mutation did not complement transposition of either a Ty3 catalytic site mutant or a nuclear localization mutant but did increase the amount of cDNA in several mutants and complement at least one of the cDNA mutants for transposition. These in vivo data support a model in which independent IN domains can contribute to reverse transcription and integration. We conclude that during reverse transcription, the Ty3 IN domain interacts closely with the polymerase domain and may even constitute a domain within a heterodimeric RT. These studies also suggest that during integration the IN catalytic site and at least portions of the IN carboxyl-terminal domain act in cis.


Cytometry Part A | 2014

The effect of cell subset isolation method on gene expression in leukocytes

Nadejda Beliakova-Bethell; Marta Massanella; Cory H. White; Steven M. Lada; Pinyi Du; Florin Vaida; Juli a Blanco; Celsa A. Spina; Christopher H. Woelk

Multiple scientific disciplines require the isolation of specific subsets of blood cells from patient samples for gene expression analysis by microarray or RNA‐sequencing, preserving disease‐ or treatment‐related signatures. However, little is known with respect to the impact of different cell isolation methods on gene expression and the effects of positive selection, negative selection, and fluorescence activated cell sorting (FACS) have not previously been assessed in parallel. To address this knowledge gap, CD4+ T cells, CD8+ T cells, B cells, and monocytes were isolated from blood samples from five independent donors using positive immunomagnetic selection, negative immunomagnetic selection, and FACS. We hypothesized that positive selection and FACS would yield higher purity but may have an impact on gene expression since both methods utilize antibodies that bind surface receptors of the cell type of interest. Moreover, FACS might upregulate stress response genes due to passage of the cells through the sorter. Microarray gene expression data were generated and subjected to unsupervised clustering and differential gene expression analysis. Surprisingly, these analyses revealed that gene expression signatures were more similar between cells isolated by negative selection and FACS compared to cells isolated by positive selection. Moreover, genes that are involved in the response to stress generally had the highest expression in cells isolated by negative or positive selection and not FACS. Thus, FACS is the recommended method for isolation of leukocyte subsets for gene expression studies since this method results in the purest subset populations and does not appear to induce a stress response.


Journal of Virology | 2008

Ty3 Nucleocapsid Controls Localization of Particle Assembly

Liza S.Z. Larsen; Nadejda Beliakova-Bethell; Virginia Bilanchone; Min Zhang; Anne Lamsa; Rhonda DaSilva; G. Wesley Hatfield; Kunio Nagashima; Suzanne Sandmeyer

ABSTRACT Expression of the budding yeast retrotransposon Ty3 results in production of viruslike particles (VLPs) and retrotransposition. The Ty3 major structural protein, Gag3, similar to retrovirus Gag, is processed into capsid, spacer, and nucleocapsid (NC) during VLP maturation. The 57-amino-acid Ty3 NC protein has 17 basic amino acids and contains one copy of the CX2CX4HX4C zinc-binding motif found in retrovirus NC proteins. Ty3 RNA, protein, and VLPs accumulate in clusters associated with RNA processing bodies (P bodies). This study investigated the role of the NC domain in Ty3-P body clustering and VLP assembly. Fifteen Ty3 NC Ala substitution and deletion mutants were examined using transposition, immunoblot, RNA protection, cDNA synthesis, and multimerization assays. Localization of Ty3 proteins and VLPs was characterized microscopically. Substitutions of each of the conserved residues of the zinc-binding motif resulted in the loss of Ty3 RNA packaging. Substitution of the first two of four conserved residues in this motif caused the loss of Ty3 RNA and protein clustering with P bodies and disrupted particle formation. NC was shown to be a mediator of formation of Ty3 RNA foci and association of Ty3 RNA and protein with P bodies. Mutations that disrupted these NC functions resulted in various degrees of Gag3 nuclear localization and a spectrum of different particle states. Our findings are consistent with the model that Ty3 assembly is associated with P-body components. We hypothesize that the NC domain acts as a molecular switch to control Gag3 conformational states that affect both assembly and localization.


Journal of Virology | 2007

Ty3 Capsid Mutations Reveal Early and Late Functions of the Amino-Terminal Domain

Liza S.Z. Larsen; Min Zhang; Nadejda Beliakova-Bethell; Virginia Bilanchone; Anne Lamsa; Kunio Nagashima; Rani Najdi; Kathryn Kosaka; Vuk Kovacevic; Jianlin Cheng; Pierre Baldi; G. Wesley Hatfield; Suzanne Sandmeyer

ABSTRACT The Ty3 retrotransposon assembles into 50-nm virus-like particles that occur in large intracellular clusters in the case of wild-type (wt) Ty3. Within these particles, maturation of the Gag3 and Gag3-Pol3 polyproteins by Ty3 protease produces the structural proteins capsid (CA), spacer, and nucleocapsid. Secondary and tertiary structure predictions showed that, like retroviral CA, Ty3 CA contains a large amount of helical structure arranged in amino-terminal and carboxyl-terminal bundles. Twenty-six mutants in which alanines were substituted for native residues were used to study CA subdomain functions. Transposition was measured, and particle morphogenesis and localization were characterized by analysis of protein processing, cDNA production, genomic RNA protection, and sedimentation and by fluorescence and electron microscopy. These measures defined five groups of mutants. Proteins from each group could be sedimented in a large complex. Mutations in the amino-terminal domain reduced the formation of fluorescent Ty3 protein foci. In at least one major homology region mutant, Ty3 protein concentrated in foci but no wt clusters of particles were observed. One mutation in the carboxyl-terminal domain shifted assembly from spherical particles to long filaments. Two mutants formed foci separate from P bodies, the proposed sites of assembly, and formed defective particles. P-body association was therefore found to be not necessary for assembly but correlated with the production of functional particles. One mutation in the amino terminus blocked transposition after cDNA synthesis. Our data suggest that Ty3 proteins are concentrated first, assembly associated with P bodies occurs, and particle morphogenesis concludes with a post-reverse transcription, CA-dependent step. Particle formation was generally resistant to localized substitutions, possibly indicating that multiple domains are involved.


AIDS | 2013

Suberoylanilide hydroxamic acid induces limited changes in the transcriptome of primary CD4(+) T cells.

Nadejda Beliakova-Bethell; Jin X. Zhang; Akul Singhania; Vivian Lee; Valeri H. Terry; Douglas D. Richman; Celsa A. Spina; Christopher H. Woelk

Objective:To assess the off-target effects of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) in human primary CD4+ T cells. Design:A pharmacologically relevant concentration (340 nmol/l) of SAHA was shown to significantly increase histone hyperacetylation by 24 h and this length of treatment was selected to determine its impact on gene expression in primary CD4+ T cells. Methods:Illumina Beadchips for microarray gene expression analysis were used to analyze differential gene expression between cells treated or not with SAHA with a paired analysis using multivariate permutation tests. Gene ontology, biological pathway and protein interaction network analyses were used to identify the higher order biological processes affected by SAHA treatment. Results:Modest modulation by SAHA was observed for 1847 genes with 80% confidence level of no more than 10% false positives. A thousand genes were upregulated by SAHA and 847 downregulated. Pathways and gene ontologies overrepresented in the list of differentially expressed genes included Glycolysis/Gluconeogenesis, tRNA Modification, and the Histone Acetyltransferase Complex. Protein interaction network analysis revealed that transcription factor c-Myc, which was downregulated by SAHA treatment at the mRNA level, interacts with a number of SAHA-responsive genes. Conclusions:The effects on transcription by SAHA were sufficiently modest to support trials to activate HIV replication as part of an eradication strategy. SAHA did not appear to modulate proliferative or apoptotic processes to a great extent, which might impact the ability of patients to eradicate the virus reservoir following activation by HDACi treatment.


Antiviral Research | 2013

Differential gene expression in HIV-infected individuals following ART

Marta Massanella; Akul Singhania; Nadejda Beliakova-Bethell; Rose Pier; Steven M. Lada; Cory H. White; Josué Pérez-Santiago; Julià Blanco; Douglas D. Richman; Susan J. Little; Christopher H. Woelk

Previous studies of the effect of ART on gene expression in HIV-infected individuals have identified small numbers of modulated genes. Since these studies were underpowered or cross-sectional in design, a paired analysis of peripheral blood mononuclear cells (PBMCs), isolated before and after ART, from a robust number of HIV-infected patients (N=32) was performed. Gene expression was assayed by microarray and 4157 differentially expressed genes (DEGs) were identified following ART using multivariate permutation tests. Pathways and gene ontology (GO) terms over-represented for DEGs reflected the transition from a period of active virus replication before ART to one of viral suppression (e.g., repression of JAK-STAT signaling) and possible prolonged drug exposure (e.g., oxidative phosphorylation pathway) following ART. CMYC was the DEG whose product made the greatest number of interactions at the protein level in protein interaction networks (PINs), which has implications for the increased incidence of Hodgkins lymphoma (HL) in HIV-infected patients. The differential expression of multiple genes was confirmed by RT-qPCR including well-known drug metabolism genes (e.g., ALOX12 and CYP2S1). Targets not confirmed by RT-qPCR (i.e., GSTM2 and RPL5) were significantly confirmed by droplet digital (ddPCR), which may represent a superior method when confirming DEGs with low fold changes. In conclusion, a paired design revealed that the number of genes modulated following ART was an order of magnitude higher than previously recognized.


Journal of Interferon and Cytokine Research | 2013

HIV downregulates interferon-stimulated genes in primary macrophages

Seong-Heon Wie; Pinyi Du; Tiffany Luong; Steffney Rought; Nadejda Beliakova-Bethell; Jean Lozach; Jacques Corbeil; Richard S. Kornbluth; Douglas D. Richman; Christopher H. Woelk

HIV is able to outpace the innate immune response, including that mediated by interferon (IFN), to establish a productive infection. Primary macrophages, however, may be protected from HIV infection by treatment with type I IFN before virus exposure. The ability of HIV to modulate the type I IFN-mediated innate immune response when it encounters a cell that has already been exposed to IFN remains poorly defined. The optimal pretreatment time (12 h) and the most potent HIV-inhibitors (e.g., IFN-α2 and -ω) were identified to investigate the ability of HIV to modulate an established type I IFN response. Gene expression at the level of the entire transcriptome was then compared between primary macrophages treated with type I IFNs, as opposed to treated with IFNs and then infected with HIV. Although HIV was not able to establish a robust infection, the virus was able to downregulate a number of IFN-stimulated genes (ISGs) with a fold change greater than 1.5 (i.e., AXL, IFI27, IFI44, IFI44L, ISG15, OAS1, OAS3, and XAF1). The downregulation of OAS1 by the presence of HIV was confirmed by real-time quantitative polymerase chain reaction. In conclusion, even though HIV replication is significantly inhibited by IFN pretreatment, the virus is able to downregulate the transcription of known antiviral ISGs (e.g., IFI44, ISG15, and OAS1).


Journal of Virology | 2009

Ty3 Nuclear Entry Is Initiated by Viruslike Particle Docking on GLFG Nucleoporins

Nadejda Beliakova-Bethell; Laura J. Terry; Virginia Bilanchone; Rhonda DaSilva; Kunio Nagashima; Susan R. Wente; Suzanne Sandmeyer

ABSTRACT Yeast retrotransposons form intracellular particles within which replication occurs. Because fungal nuclear membranes do not break down during mitosis, similar to retroviruses infecting nondividing cells, the cDNA produced must be translocated through nuclear pore complexes. The Saccharomyces cerevisiae long terminal repeat retrotransposon Ty3 assembles its Gag3 and Gag3-Pol3 precursor polyproteins into viruslike particles in association with perinuclear P-body foci. These perinuclear clusters of Ty3 viruslike particles localized to sites of clustered nuclear pore complexes (NPCs) in a nup120Δ mutant, indicating that Ty3 particles and NPCs interact physically. The NPC channels are lined with nucleoporins (Nups) with extended FG (Phe-Gly) motif repeat domains, further classified as FG, FxFG, or GLFG repeat types. These domains mediate partitioning of proteins between the cytoplasm and the nucleus. Here we have systematically examined the requirements for FG repeat domains in Ty3 nuclear transport. The GLFG domains interacted in vitro with virus-like particle Gag3, and this interaction was disrupted by mutations in the amino-terminal domain of Gag3, which is predicted to lie on the external surface of the particles. Accordingly, Ty3 transposition was decreased in strains with the GLFG repeats deleted. The spacer-nucleocapsid domain of Gag3, which is predicted to be internal to the particle, interacted with GLFG repeats and nucleocapsid localized to the nucleus. We conclude that Ty3 particle docking on nuclear pores is facilitated by interactions between Gag3 and GLFG Nups and that nuclear entry of the preintegration complex is further promoted by nuclear localization signals within the nucleocapsid and integrase.


Antiviral Research | 2014

Maraviroc intensification in patients with suppressed HIV viremia has limited effects on CD4+ T cell recovery and gene expression

Nadejda Beliakova-Bethell; Sonia Jain; Christopher H. Woelk; Mallory D. Witt; Xiaoying Sun; Steven M. Lada; Celsa A. Spina; Miguel Goicoechea; Steffney Rought; Richard Haubrich; Michael P. Dubé

Addition of the CCR5 inhibitor Maraviroc (MVC) to ongoing antiretroviral therapy increases CD4+ T cell counts in some virologically suppressed patients with suboptimal CD4+ T cell recovery. To understand the mechanisms by which MVC elicits increases in CD4+ T cell counts, the present study was undertaken to identify host factors (i.e. genes) that are modulated and are correlated with CD4+ T cell recovery during the 24weeks of MVC intensification in 32 subjects. Median changes of CD4+ T cell counts over 24weeks of MVC compared to baseline were 38cells/mm(3) (p<0.001). The median slope of CD4+ T cell recovery was 39cells/mm(3) per year before initiation of MVC and 76cells/mm(3) per year during MVC intensification, however, this increase was not statistically significant (p=0.33). Microarray analysis (N=31,426 genes) identified a single differentially expressed gene, tumor necrosis factor alpha (TNF), which was modestly (1.44-fold, p<0.001) downregulated by MVC at week 24 compared to baseline. TNF differential expression was evaluated using an independent method of droplet digital PCR, but the difference was not significant (p=0.6). Changes in gene expression did not correlate with CD4+ T cell recovery or any changes in the CD4+ T cell maturation, proliferation and activation phenotypes. In summary, our data suggest that modest improvements of CD4+ T cell counts during MVC intensification cannot be explained by changes in gene expression elicited by MVC. However, the modest changes in T cell composition, including reduction of the percentages of Tregs, proliferating CD4+ T cells and senescent CD8+ T cells, suggest immunologically favorable effects of MVC.


AIDS | 2010

Gene expression before HAART initiation predicts HIV-infected individuals at risk of poor CD4+ T-cell recovery.

Christopher H. Woelk; Nadejda Beliakova-Bethell; Miguel Goicoechea; Yingdong Zhao; Pinyi Du; Steffney Rought; Jean Lozach; Josué Pérez-Santiago; Douglas D. Richman; Davey M. Smith; Susan J. Little

Objective: To identify a pre-HAART gene expression signature in peripheral blood mononuclear cells (PBMCs) predictive of CD4+ T-cell recovery during HAART in HIV-infected individuals. Design: This retrospective study evaluated PBMC gene expression in 24 recently HIV-infected individuals before the initiation of HAART to identify genes whose expression is predictive of CD4+ T-cell recovery after 48 weeks of HAART. Methods: The change in CD4+ T-cell count (ΔCD4) over the 48-week study period was calculated for each of the 24 participants. Twelve participants were assigned to the ‘good’ (ΔCD4 ≥ 200 cells/μl) and 12 to the ‘poor’ (ΔCD4 < 200 cells/μl) CD4+ T-cell recovery group. Gene expression profiling of the entire transcriptome using Illumina BeadChips was performed with PBMC samples obtained before HAART. Gene expression classifiers capable of predicting CD4+ T-cell recovery group (good vs. poor), as well as the specific ΔCD4 value, at week 48 were constructed using methods of Class Prediction. Results: The expression of 40 genes in PBMC samples taken before HAART predicted CD4+ T-cell recovery group (good vs. poor) at week 48 with 100% accuracy. The expression of 22 genes predicted a specific ΔCD4 value for each HIV-infected individual that correlated well with actual values (R = 0.82). Predicted ΔCD4 values were also used to assign individuals to good vs. poor CD4+ T-cell recovery groups with 79% accuracy. Conclusion: Gene expression in PBMCs can be used as biomarkers to successfully predict disease outcomes among HIV-infected individuals treated with HAART.

Collaboration


Dive into the Nadejda Beliakova-Bethell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celsa A. Spina

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cory H. White

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven M. Lada

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Margolis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kunio Nagashima

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge