César Dalmolin Bergoli
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by César Dalmolin Bergoli.
Operative Dentistry | 2014
Vinícius Felipe Wandscher; César Dalmolin Bergoli; If Limberger; Tm Ardenghi; L.F. Valandro
PURPOSE To evaluate the fracture load and survival rate of weakened and non-weakened roots restored with different intracanal posts. METHODS Eighty teeth (16 mm) were prepared to a length of 10 mm with a custom drill. Fifty roots were weakened with a tapered diamond drill, and 30 roots were not. The specimens were embedded with acrylic resin up to 3 mm from the coronal aspect, and the periodontal ligament was simulated. The 50 weakened roots were restored with (n=10) CPC-gold (cast post and core made of gold alloy), CPC-Ni (cast post and core made of Ni-Cr alloy), FP (glass fiber posts), FP-W (glass fiber posts with a wider coronal diameter), and FP-CR (fiber posts relined with composite resin). The 30 nonweakened roots were restored with (n=10) CPC-gold, CPC-Ni, and FP. All of the posts were adhesively cemented. All of the specimens were mechanically cycled (37°C, 45°, 130 N, 2.2 Hz, and 1.5 million pulses) and evaluated after every 5 × 10(4) cycles to evaluate the presence of cracks as a primary outcome (event). The specimens that survived cycling were subjected to a fracture load test (load application on the palatal aspect at a 45° inclination). Failure mode was classified as favorable (above the simulated bone level) and catastrophic (below the simulated bone level). Survival rates were estimated using the Kaplan-Meier method. Fracture load data were analyzed using the Kruskal-Wallis test (α=0.05) for weakened roots, one-way analysis of variance, and Tukey test (p<0.05) for non-weakened roots, and Student t-test (p<0.05) compared nonweakened vs weakened roots for the same post system. RESULTS For the preliminary survival results, FP-W showed a higher survival rate when compared with CPC (gold/Ni). For the fracture load (N), the statistical analysis (p<0.0001) presented differences among the weakened groups: CPC-gold (541.4) = CPC-Ni (642.6) > FP (282.2) = FP-W (274.1) = FP-RC (216.6). No differences were observed for the groups that were nonweakened (majority of favorable failures): CPC-gold (459.3) = CPC-Ni (422.0) = FP (347.9). Weakened roots restored with CPC-gold promoted high values of load fracture and unfavorable failure rates. CONCLUSION Cast post and cores or fiber posts can be used for restoring nonweakened roots. However, for weakened roots, a fiber post with a wider cervical emerging diameter appears to be a better alternative when compared with cast post and cores.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
Vinícius Felipe Wandscher; César Dalmolin Bergoli; Ariele Freitas de Oliveira; Osvaldo Bazzan Kaizer; Alexandre Luiz Souto Borges; Inácio da Fontoura Limberguer; Luiz Felipe Valandro
This study evaluated the shear stress presented in glass fiber posts with parallel fiber (0°) and different coronal diameters under fatigue, fracture resistance and FEA. 160 glass-fiber posts (N=160) with eight different coronal diameters were used (DT=double tapered, number of the post=coronal diameter and W=Wider - fiber post with coronal diameter wider than the conventional): DT1.4; DT1.8W; DT1.6; DT2W; DT1.8; DT2.2W; DT2; DT2.2. Eighty posts were submitted to mechanical cycling (3×10(6) cycles; inclination: 45°; load: 50N; frequency: 4Hz; temperature: 37°C) to assess the surviving under intermittent loading and other eighty posts were submitted to fracture resistance testing (resistance [N] and shear-stress [MPa] values were obtained). The eight posts types were 3D modeled (Rhinoceros 4.0) and the shear-stress (MPa) evaluated using FEA (Ansys 13.0). One-way ANOVA showed statistically differences to fracture resistance (DT2.2W and DT2.2 showed higher values) and shear stress values (DT1.4 showed lower values). Only the DT1.4 fiber posts failed after mechanical cycling. FEA showed similar values of shear stress between the groups and these values were similar to those obtained by shear stress testing. The failure analysis showed that 95% of specimens failed by shear. Posts with parallel fiber (0°) may suffer fractures when an oblique shear load is applied on the structure; except the thinner group, greater coronal diameters promoted the same shear stresses.
Journal of Applied Oral Science | 2014
Ana Maria Estivalete Marchionatti; Vinícius Felipe Wandscher; Juliana Broch; César Dalmolin Bergoli; Juliana Maier; Luiz Felipe Valandro; Osvaldo Bazzan Kaizer
Objective Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods Ninety roots were randomly distributed into 3 groups (n=10) (C-MC: control; P-MC: polyether; AS-MC: addition silicone) to test bond strength and 6 groups (n=10) (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling) to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline), and the teeth cut into 3 slices (2 mm), which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min) performed on all groups. Results Periodontal ligament simulation did not affect the bond strength (p=0.244) between post and dentin. Simulation of periodontal ligament (p=0.153) and application of mechanical cycling (p=0.97) did not affect fracture resistance. Conclusions The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study.
Operative Dentistry | 2015
Marco Antonio Bottino; A Snellaert; César Dalmolin Bergoli; Mutlu Özcan; Marco C. Bottino; Luiz Felipe Valandro
This study sought to evaluate the resin microtensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5×5×6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9%HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37°C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (α=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.
Operative Dentistry | 2014
César Dalmolin Bergoli; Josete Barbosa Cruz Meira; Luiz Felipe Valandro; Marcos Antonio Bottino
PURPOSE To evaluate the survival rate, success rate, load to fracture, and finite element analysis (FEA) of maxillary central incisors and canines restored using ceramic veneers and varying preparation designs. METHODS AND MATERIALS Thirty human maxillary central incisors and 30 canines were allocated to the following four groups (n=15) based on the preparation design and type of tooth: Gr1 = central incisor with a conservative preparation; Gr2 = central incisor with a conventional preparation with palatal chamfer; Gr3 = canine with a conservative preparation; Gr4 = canine with a conventional preparation with palatal chamfer. Ceramic veneers (lithium disilicate) were fabricated and adhesively cemented (Variolink Veneer). The specimens were subjected to 4 × 10(6) mechanical cycles and evaluated at every 500,000 cycles to detect failures. Specimens that survived were subjected to a load to fracture test. Bidimensional models were modeled (Rhinoceros 4.0) and evaluated (MSC.Patrans 2005r2 and MSC.Marc 2005r2) on the basis of their maximum principal stress (MPS) values. Survival rate values were analyzed using the Kaplan-Meier test (α = 0.05) and load to fracture values were analyzed using the Student t-test (α = 0.05). RESULTS All groups showed 100% survival rates. The Student t-test did not show any difference between the groups for load to fracture. FEA showed higher MPS values in the specimens restored using veneers with conventional preparation design with palatal chamfer. CONCLUSION Preparation design did not affect the fracture load of canines and central incisors, but the veneers with conventional preparation design with palatal chamfer exhibited a tendency to generate higher MPS values.
Journal of Adhesion | 2012
César Dalmolin Bergoli; Marina Amaral; Luiz Felipe Valandro
This study evaluated the effect of different thickness of disk-shaped specimens on the push-out bond strength test. Eighteen lower bovine teeth were sectioned (20 mm) and prepared (15 mm) with the same post system drill (Light Post® #1, Schaumburg, IL, Bisco, USA). The apical third of each specimen was embedded in a plastic matrix filled with an acrylic resin (Dencrilay™, Dencril, Sao Paulo, Brazil). The posts were cleaned with alcohol, silanated (ProSil®, FGM, Joenville, SC, Brazil) and cemented with the RelyX™ U100 (3 M ESPE, St. Paul, MN, USA). Each specimen was sectioned into three pieces of differing thicknesses (1, 2, and 4 mm). These disk-samples were allocated into 3 groups (n = 18) and subjected to push-out testing. One-way ANOVA showed no influence of the specimen thickness on the results (p = 0.842). No correlation was observed between thickness and push-out bond strength (Pearson Correlation, r2 = 0.0688; P = 0.6209). The push-out bond strength test was not affected by the thickness of the disk-specimens.
Journal of Adhesion Science and Technology | 2017
César Dalmolin Bergoli; J.M.C. Lima; Marco Antonio Bottino; Renata Marques de Melo; Luiz Felipe Valandro
Abstract This study evaluates the influence of operator experience on the bond strength between fiber posts and root dentin using different cementation strategies. One hundred and twenty bovine teeth were selected, cleaned, disinfected, and sectioned at 15 mm of root length (apical–coronal). The root canals were prepared up to 12 mm and the apical portions were embedded with acrylic resin in plastic matrices. Thereafter, the teeth were randomly distributed to six operators (three with experience and three without experience). The operators performed cementation using two different cementation strategies: conventional (three-step etch-and-rinse adhesive; Scotchbond Multi-Purpose and RelyX ARC) or simplified (one-step self-adhesive resin cement; RelyX U200). Following cementation, each specimen was sectioned to obtain three slices (2 mm). Slices were submitted to the push-out test and failure analysis. Mean bond strength of each group was evaluated by the Student’s t-test (α = 0.05). Statistical analysis did not show any influence of operator experience or cementation strategy on the bond strength values. The principal mode of failure was adhesive between the resin cement and root dentin. Authors conclude that operators with different clinical experience could achieve similar values of bond strength between fiber posts and root dentin, independent of the cementation strategy (conventional or simplified).
Journal of Adhesive Dentistry | 2014
Emília Pithan Prochnow; Marina Amaral; César Dalmolin Bergoli; Tatiana Bernardon Silva; Guilherme de Siqueira Ferreira Anzaloni Saavedra; Luiz Felipe Valandro
PURPOSE To evaluate the microtensile bond strength of indirect resin composite inlays to dentin using two cementation strategies, before and after mechanical aging. MATERIALS AND METHODS Standardized inlay cavities (bucco-lingual width: 3 mm; depth: 4 mm) were prepared in 32 human premolars. The teeth were embedded in self-curing acrylic resin up to 3 mm from the cementoenamel junction, impressions were made using a polyvinyl siloxane material, master dies were obtained using type 4 stone, and inlay composite resin restorations were fabricated (Sinfony, 3M ESPE). The teeth were randomly allocated into 4 groups according to the cementation strategy (conventional [C] and simplified [S]) and aging (mechanical cycling [MC] and not aged): C[G1]: Adper SingleBond + RelyX ARC without aging; CMC[G2]: conventional cementation + mechanical cycling (106 cycles, 88 N, 4 Hz, ± 37°C); S[G3]: self-adhesive resin cement (RelyX U-100) without aging; SMC[G4] self-adhesive cementation + mechanical cycling. Intaglio surfaces of composite inlays were treated by tribochemical silica coating in G1 and G2, while G3 and G4 received no surface treatment. Non-aged specimens were stored in a moist environment at ca 37°C for the same period as MC (3 days). Non-trimmed beam specimens (bonding area = 1 mm²) were produced by serial cutting, and microtensile testing was performed (0.5 mm/min). RESULTS Two-way ANOVA showed that the microtensile bond strength was affected only by cementation strategy (p < 0.0001). Tukeys test showed that groups G1 (35.1 ± 9.1) and G2 (32.7 ± 10.7) presented significantly higher bond strength values than G3 (8.7 ± 6.3) and G4 (5.2 ± 4.6). CONCLUSION The use of a conventional adhesive technique and tribochemical silica coating resulted in higher μTBS than the one-step simplified cementation, even after mechanical cycling.
Operative Dentistry | 2016
Vf Wandscher; César Dalmolin Bergoli; If Limberger; Tp Cenci; Paolo Baldissara; L.F. Valandro
OBJECTIVE This article aims to present a fractographic analysis of an anterior tooth restored with a glass fiber post with parallel fiber arrangement, taking into account force vectors, finite element analysis, and scanning electron microscopy (SEM). METHODS A patient presented at the Faculty of Dentistry (Federal University of Santa Maria, Brazil) with an endodontically treated tooth (ETT), a lateral incisor that had a restorable fracture. The treatment was performed, and the fractured piece was analyzed using stereomicroscopy, SEM, and finite element analysis. RESULTS The absence of remaining coronal tooth structure might have been the main factor for the clinical failure. We observed different stresses actuating in an ETT restored with a fiber post as well as their relationship with the ultimate fracture. Tensile, compression, and shear stresses presented at different levels inside the restored tooth. Tensile and compressive stresses acted together and were at a maximum in the outer portions and a minimum in the inner portions. In contrast, shear stresses acted concomitantly with tensile and compressive stresses. Shear was higher in the inner portions (center of the post), and lower in the outer portions. This was confirmed by finite element analysis. The SEM analysis showed tensile and compression areas in the fiber post (exposed fibers=tensile areas=lingual surface; nonexposed fibers=compression areas=buccal surface) and shear areas inside the post (scallops and hackle lines). Stereomicroscopic analysis showed brown stains in the crown/root interface, indicating the presence of microleakage (tensile area=lingual surface). CONCLUSION We concluded that glass fiber posts with parallel fibers (0°), when restoring anterior teeth, present a greater fracture potential by shear stress because parallel fibers are not mechanically resistant to support oblique occlusal loads. Factors such as the presence of remaining coronal tooth structure and occlusal stability assist in the biomechanical equilibrium of stresses that act upon anterior teeth.
Journal of Adhesion Science and Technology | 2016
Marília Pivetta Rippe; Vinícius Felipe Wandscher; César Dalmolin Bergoli; Paolo Baldissara; Mutlu Özcan; Luiz Felipe Valandro
Abstract The aim of this study was to evaluate the influence of the frequency of mechanical pulses during mechanical fatigue aging on bond strength between glass fiber posts and root dentin. Fiber posts were adhesively cemented in 30 bovine roots and the core was built up with composite. All specimens were subjected to mechanical cycling (45° angle; 37 °C; 50 N; 2×106 pulses) at different frequencies: 2, 4, and 8 Hz. After the fatigue, each specimen was submitted to push out test. The bond strength was calculated for data analysis (one-way ANOVA, p = 0.05). The frequency did not affect the push-out (p = 0.7). The main failure mode was between dentin and cement in all groups. The mechanical pulses were not influenced by the bond strength between root dentin and fiber posts. Thus, it is possible to decrease the time-consuming in vitro tests involving posts without damaging the reliability of the test.