Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cesare Mancuso is active.

Publication


Featured researches published by Cesare Mancuso.


Nature Reviews Neuroscience | 2007

Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity

Vittorio Calabrese; Cesare Mancuso; Menotti Calvani; Enrico Rizzarelli; D. Allan Butterfield; Anna Maria Giuffrida Stella

At the end of the 1980s, it was clearly demonstrated that cells produce nitric oxide and that this gaseous molecule is involved in the regulation of the cardiovascular, immune and nervous systems, rather than simply being a toxic pollutant. In the CNS, nitric oxide has an array of functions, such as the regulation of synaptic plasticity, the sleep–wake cycle and hormone secretion. Particularly interesting is the role of nitric oxide as a Janus molecule in the cell death or survival mechanisms in brain cells. In fact, physiological amounts of this gas are neuroprotective, whereas higher concentrations are clearly neurotoxic.


Neurochemical Research | 2008

Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity

Vittorio Calabrese; Carolin Cornelius; Cesare Mancuso; Giovanni Pennisi; Stella Calafato; Francesco Bellia; Timothy E. Bates; Anna Maria Giuffrida Stella; Tony Schapira; Albena T. Dinkova Kostova; Enrico Rizzarelli

The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer’s and Parkinson’s diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called “protein conformational diseases”. The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-l-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed.


Neurochemical Research | 2007

Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes

Vittorio Calabrese; Eleonora Guagliano; Maria Sapienza; Mariangela Panebianco; Stella Calafato; Edoardo Puleo; Giovanni Pennisi; Cesare Mancuso; D. Allan Butterfield; Anna Maria Giuffrida Stella

Reduced expression and/or activity of antioxidant proteins lead to oxidative stress, accelerated aging and neurodegeneration. However, while excess reactive oxygen species (ROS) are toxic, regulated ROS play an important role in cell signaling. Perturbation of redox status, mutations favoring protein misfolding, altered glyc(osyl)ation, overloading of the product of polyunsaturated fatty acid peroxidation (hydroxynonenals, HNE) or cholesterol oxidation, can disrupt redox homeostasis. Collectively or individually these effects may impose stress and lead to accumulation of unfolded or misfolded proteins in brain cells. Alzheimer’s (AD), Parkinson’s and Huntington’s disease, amyotrophic lateral sclerosis and Friedreich’s ataxia are major neurological disorders associated with production of abnormally aggregated proteins and, as such, belong to the so-called “protein conformational diseases”. The pathogenic aggregation of proteins in non-native conformation is generally associated with metabolic derangements and excessive production of ROS. The “unfolded protein response” has evolved to prevent accumulation of unfolded or misfolded proteins. Recent discoveries of the mechanisms of cellular stress signaling have led to new insights into the diverse processes that are regulated by cellular stress responses. The brain detects and overcomes oxidative stress by a complex network of “longevity assurance processes” integrated to the expression of genes termed vitagenes. Heat-shock proteins are highly conserved and facilitate correct protein folding. Heme oxygenase-1, an inducible and redox-regulated enzyme, has having an important role in cellular antioxidant defense. An emerging concept is neuroprotection afforded by heme oxygenase by its heme degrading activity and tissue-specific antioxidant effects, due to its products carbon monoxide and biliverdin, which is then reduced by biliverdin reductase in bilirubin. There is increasing interest in dietary compounds that can inhibit, retard or reverse the steps leading to neurodegeneration in AD. Specifically any dietary components that inhibit inappropriate inflammation, AβP oligomerization and consequent increased apoptosis are of particular interest, with respect to a chronic inflammatory response, brain injury and β-amyloid associated pathology. Curcumin and ferulic acid, the first from the curry spice turmeric and the second a major constituent of fruit and vegetables, are candidates in this regard. Not only do these compounds serve as antioxidants but, in addition, they are strong inducers of the heat-shock response. Food supplementation with curcumin and ferulic acid are therefore being considered as a novel nutritional approach to reduce oxidative damage and amyloid pathology in AD. We review here some of the emerging concepts of pathways to neurodegeneration and how these may be overcome by a nutritional approach.


Biogerontology | 2009

Ferulic acid and its therapeutic potential as a hormetin for age-related diseases

Eugenio Barone; Vittorio Calabrese; Cesare Mancuso

Ferulic acid (FA) is a polyphenol very abundant in vegetables and maize bran. Several lines of evidence have shown that FA acts as a potent antioxidant in vitro, due to its ability to scavenge free radicals and induce a robust cell stress response through the up-regulation of cytoprotective enzymes such as heme oxygenase-1, heat shock protein 70, extracellular signal-regulated kinase 1/2 and Akt. Furthermore, FA inhibited the expression and/or activity of cytotoxic enzymes including inducible nitric oxide synthase, caspases and cyclooxygenase-2. On this basis, FA has been proposed for the treatment of several age-related diseases such as neurodegenerative disorders, cardiovascular diseases, diabetes and cancer. However, although the great abundance of in vitro data, the real efficacy of FA in humans has not been demonstrated so far. New efforts and resources should be transferred to clinical research for the complete evaluation of the therapeutic potential of FA in chronic diseases.


Food and Chemical Toxicology | 2014

Ferulic acid: Pharmacological and toxicological aspects

Cesare Mancuso; Rosaria Santangelo

Ferulic acid (FA) belongs to the family of phenolic acids and is very abundant in fruits and vegetables. Over the past years, several studies have shown that FA acts as a potent antioxidant by scavenging free radicals and enhancing the cell stress response through the up-regulation of cytoprotective systems, e.g. heme oxygenase-1, heat shock protein 70, extracellular signal-regulated kinase 1/2 and the proto-oncogene Akt. Furthermore, FA was shown to inhibit the expression and/or activity of cytotoxic enzymes, including inducible nitric oxide synthase, caspases and cyclooxygenase-2. Based on this evidence, FA has been proposed as a potential treatment for many disorders including Alzheimers disease, cancer, cardiovascular diseases, diabetes mellitus and skin disease. However, despite the great abundance of preclinical research, only a few studies were carried out in humans, the majority of which used foods containing FA, and therefore the clinical efficacy of this mode of administration needs to be further documented. New efforts and resources are needed in clinical research for the complete evaluation of FA therapeutic potential in chronic diseases.


Expert Opinion on Investigational Drugs | 2007

Natural antioxidants in Alzheimer's disease

Cesare Mancuso; Timothy E. Bates; D. Allan Butterfield; Stella Calafato; Carolin Cornelius; Antonino De Lorenzo; Albena T. Dinkova Kostova; Vittorio Calabrese

Alzheimers disease (AD) is a progressive neurodegenerative disorder characterised by severe cognitive impairment that ultimately leads to death. Current drugs used in AD are acetylcholinesterase inhibitors and antagonists to the NMDA receptors. These drugs may only slightly improve cognitive functions but have only very limited impact on the clinical course of the disease. In the past several years, based on in vitro and in vivo studies in laboratory animals, natural antioxidants, such as resveratrol, curcumin and acetyl-l-carnitine have been proposed as alternative therapeutic agents for AD. An increasing number of studies demonstrated the efficacy of primary antioxidants, such as polyphenols, or secondary antioxidants, such as acetylcarnitine, to reduce or to block neuronal death occurring in the pathophysiology of this disorder. These studies revealed that other mechanisms than the antioxidant activities could be involved in the neuroprotective effect of these compounds. This paper discusses the evidence for the role of acetylcarnitine in modulating redox-dependent mechanisms leading to the upregulation of vitagenes. Furthermore, future development of novel antioxidant drugs targeted to the mitochondria should result in effectively slowing disease progression. The association with new drug delivery systems may be desirable and useful for the therapeutic use of antioxidants in human neurodegenerative diseases.


Cell Stress & Chaperones | 2005

Oxidative stress and cellular stress response in diabetic nephropathy

Vittorio Calabrese; Cesare Mancuso; Maria Sapienza; Eduardo Puleo; Stella Calafato; Carolin Cornelius; Manuela Finocchiaro; Andrea Mangiameli; Maurizio Di Mauro; Anna Maria Giuffrida Stella; Pietro Castellino

Abstract  Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status, a cellular-adaptive response occurs requiring functional chaperones, antioxidant production, and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes–induced nephropathy and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring advanced glycation end-products (pentosidine), protein oxidation (protein carbonyls [DNPH]), and lipid oxidation (4-hydroxy-2-nonenal [HNE] and F2-isoprostanes) in plasma, lymphocytes, and urine, whereas the lymphocyte levels of the heat shock proteins (Hsps) heme oxygenase-1 (HO-1), Hsp70, and Hsp60 as well as thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. We found increased levels of pentosidine (P < 0.01), DNPH (P < 0.05 and P < 0.01), HNE (P < 0.05 and P < 0.01), and F2-isoprostanes (P < 0.01) in all the samples from type 2 diabetic patients with nephropathy with respect to control group. This was paralleled by a significant induction of cellular HO-1, Hsp60, Hsp70, and TrxR-1 (P < 0.05 and P < 0.01). A significant upregulation of both HO-1 and Hsp70 has been detected also in lymphocytes from type 2 diabetic patients without uraemia. Significant positive correlations between DNPH and Hsp60, as well as between the degree of renal failure and HO-1 or Hsp70, also have been found in diabetic uremic subjects. In conclusion, patients affected by type 2 diabetes complicated with nephropathy are under condition of systemic oxidative stress, and the induction of Hsp and TrxR-1 is a maintained response in counteracting the intracellular pro-oxidant status.


The FASEB Journal | 1998

The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium

Giorgio Minotti; Stefania Recalcati; Alvaro Mordente; Giovanni Liberi; Antonio Maria Calafiore; Cesare Mancuso; Paolo Preziosi; Gaetano Cairo

Anticancer therapy with doxorubicin (DOX) is limited by severe cardiotoxicity, presumably reflecting the intramyocardial formation of drug metabolites that alter cell constituents and functions. In a previous study, we showed that NADPH‐supplemented cytosolic fractions from human myocardial samples can enzymatically reduce a carbonyl group in the side chain of DOX, yielding a secondary alcohol metabolite called doxorubicinol (DOXol). Here we demonstrate that DOXol delocalizes low molecular weight Fe(II) from the [4Fe‐4S] cluster of cytoplasmic aconitase. Iron delocalization proceeds through the reoxidation of DOXol to DOX and liberates DOX‐Fe(II) complexes as ultimate by‐products. Under physiologic conditions, cluster disassembly abolishes aconitase activity and forms an apoprotein that binds to mRNAs, coordinately increasing the synthesis of transferrin receptor but decreasing that of ferritin. Aconitase is thus converted into an iron regulatory protein‐1 (IRP‐1) that causes iron uptake to prevail over sequestration, forming a pool of free iron that is used for metabolic functions. Conversely, cluster reassembly converts IRP‐1 back to aconitase, providing a regulatory mechanism to decrease free iron when it exceeds metabolic requirements. In contrast to these physiologic mechanisms, DOXol‐dependent iron release and cluster disassembly not only abolish aconitase activity, but also affect irreversibly the ability of the apoprotein to function as IRP‐1 or to reincorporate iron within new Fe‐S motifs. This damage is mediated by DOX‐Fe(II) complexes and reflects oxidative modifications of ―SH residues having the dual role to coordinate cluster assembly and facilitate interactions of IRP‐1 with mRNAs. Collectively, these findings describe a novel mechanism of cardiotoxicity, suggesting that intramyocardial formation of DOXol may perturb the homeostatic processes associated with cluster assembly or disassembly and the reversible switch between aconitase and IRP‐1. These results may also provide a guideline to design new drugs that mitigate the cardiotoxicity of DOX.


Molecular Nutrition & Food Research | 2008

Curcumin and the cellular stress response in free radical-related diseases

Vittorio Calabrese; Timothy E. Bates; Cesare Mancuso; Carolin Cornelius; Bernardo Ventimiglia; Maria Teresa Cambria; Laura Di Renzo; Antonino De Lorenzo; Albena T. Dinkova-Kostova

Free radicals play a main pathogenic role in several human diseases such as neurodegenerative disorders, diabetes, and cancer. Although there has been progress in treatment of these diseases, the development of important side effects may complicate the therapeutic course. Curcumin, a well known spice commonly used in India to make foods colored and flavored, is also used in traditional medicine to treat mild or moderate human diseases. In the recent years, a growing body of literature has unraveled the antioxidant, anticarcinogenic, and antinfectious activity of curcumin based on the ability of this compound to regulate a number of cellular signal transduction pathways. These promising data obtained in vitro are now being translated to the clinic and more than ten clinical trials are currently ongoing worldwide. This review outlines the biological activities of curcumin and discusses its potential use in the prevention and treatment of human diseases.


Frontiers in Bioscience | 2009

Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases

Vittorio Calabrese; Carolin Cornelius; Cesare Mancuso; Eugenio Barone; Stella Calafato; Timothy E. Bates; Enrico Rizzarelli; Albena T. Dinkova Kostova

The ability of a cell to counteract stressful conditions, known as cellular stress response, requires the activation of pro-survival pathways and the production of molecules with anti-oxidant, anti-apoptotic or pro-apoptotic activities. Among the cellular pathways conferring protection against oxidative stress, a key role is played by vitagenes, which include heat shock proteins (Hsps) heme oxygenase-1 and Hsp70, as well as the thioredoxin/thioredoxin reductase system. Heat shock response contributes to establish a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Dietary antioxidants, such as curcumin, L-carnitine/acetyl-L-carnitine and carnosine have recently been demonstrated in vitro to be neuroprotective through the activation of hormetic pathways, including vitagenes. In the present review we discuss the importance of vitagenes in the cellular stress response and analyse, from a pharmacological point of view, the potential use of dietary antioxidants in the treatment of neurodegenerative disorders in humans.

Collaboration


Dive into the Cesare Mancuso's collaboration.

Top Co-Authors

Avatar

Eugenio Barone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Preziosi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Fabio Di Domenico

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierluigi Navarra

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge