Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolin Cornelius is active.

Publication


Featured researches published by Carolin Cornelius.


Antioxidants & Redox Signaling | 2010

Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

Vittorio Calabrese; Carolin Cornelius; Albena T. Dinkova-Kostova; Edward J. Calabrese; Mark P. Mattson

Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.


Biochimica et Biophysica Acta | 2012

Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity.

Vittorio Calabrese; Carolin Cornelius; Albena T. Dinkova-Kostova; Ivo Iavicoli; Rosanna Di Paola; Aleardo Koverech; Salvatore Cuzzocrea; Enrico Rizzarelli; Edward J. Calabrese

Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Neurochemical Research | 2008

Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity

Vittorio Calabrese; Carolin Cornelius; Cesare Mancuso; Giovanni Pennisi; Stella Calafato; Francesco Bellia; Timothy E. Bates; Anna Maria Giuffrida Stella; Tony Schapira; Albena T. Dinkova Kostova; Enrico Rizzarelli

The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer’s and Parkinson’s diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called “protein conformational diseases”. The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-l-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed.


Antioxidants & Redox Signaling | 2013

Traumatic Brain Injury: Oxidative Stress and Neuroprotection

Carolin Cornelius; Rosalia Crupi; Vittorio Calabrese; Antonio Graziano; Pietro Milone; Giovanni Pennisi; Zsolt Radak; Edward J. Calabrese; Salvatore Cuzzocrea

SIGNIFICANCE A vast amount of circumstantial evidence implicates high energy oxidants and oxidative stress as mediators of secondary damage associated with traumatic brain injury. The excessive production of reactive oxygen species due to excitotoxicity and exhaustion of the endogenous antioxidant system induces peroxidation of cellular and vascular structures, protein oxidation, cleavage of DNA, and inhibition of the mitochondrial electron transport chain. RECENT ADVANCES Different integrated responses exist in the brain to detect oxidative stress, which is controlled by several genes termed vitagens. Vitagens encode for cytoprotective heat shock proteins, and thioredoxin and sirtuins. CRITICAL ISSUES AND FUTURE DIRECTIONS This article discusses selected aspects of secondary brain injury after trauma and outlines key mechanisms associated with toxicity, oxidative stress, inflammation, and necrosis. Finally, this review discusses the role of different oxidants and presents potential clinically relevant molecular targets that could be harnessed to treat secondary injury associated with brain trauma.


Molecular Aspects of Medicine | 2011

Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity

Vittorio Calabrese; Carolin Cornelius; Salvatore Cuzzocrea; Ivo Iavicoli; Enrico Rizzarelli; Edward J. Calabrese

Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date understanding of the possible signaling mechanisms by which caloric restriction, as well hormetic caloric restriction-mimetics compounds by activating vitagenes can enhance defensive systems involved in bioenergetic and stress resistance homeostasis with consequent impact on longevity processes.


Expert Opinion on Investigational Drugs | 2007

Natural antioxidants in Alzheimer's disease

Cesare Mancuso; Timothy E. Bates; D. Allan Butterfield; Stella Calafato; Carolin Cornelius; Antonino De Lorenzo; Albena T. Dinkova Kostova; Vittorio Calabrese

Alzheimers disease (AD) is a progressive neurodegenerative disorder characterised by severe cognitive impairment that ultimately leads to death. Current drugs used in AD are acetylcholinesterase inhibitors and antagonists to the NMDA receptors. These drugs may only slightly improve cognitive functions but have only very limited impact on the clinical course of the disease. In the past several years, based on in vitro and in vivo studies in laboratory animals, natural antioxidants, such as resveratrol, curcumin and acetyl-l-carnitine have been proposed as alternative therapeutic agents for AD. An increasing number of studies demonstrated the efficacy of primary antioxidants, such as polyphenols, or secondary antioxidants, such as acetylcarnitine, to reduce or to block neuronal death occurring in the pathophysiology of this disorder. These studies revealed that other mechanisms than the antioxidant activities could be involved in the neuroprotective effect of these compounds. This paper discusses the evidence for the role of acetylcarnitine in modulating redox-dependent mechanisms leading to the upregulation of vitagenes. Furthermore, future development of novel antioxidant drugs targeted to the mitochondria should result in effectively slowing disease progression. The association with new drug delivery systems may be desirable and useful for the therapeutic use of antioxidants in human neurodegenerative diseases.


Cell Stress & Chaperones | 2005

Oxidative stress and cellular stress response in diabetic nephropathy

Vittorio Calabrese; Cesare Mancuso; Maria Sapienza; Eduardo Puleo; Stella Calafato; Carolin Cornelius; Manuela Finocchiaro; Andrea Mangiameli; Maurizio Di Mauro; Anna Maria Giuffrida Stella; Pietro Castellino

Abstract  Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status, a cellular-adaptive response occurs requiring functional chaperones, antioxidant production, and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes–induced nephropathy and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring advanced glycation end-products (pentosidine), protein oxidation (protein carbonyls [DNPH]), and lipid oxidation (4-hydroxy-2-nonenal [HNE] and F2-isoprostanes) in plasma, lymphocytes, and urine, whereas the lymphocyte levels of the heat shock proteins (Hsps) heme oxygenase-1 (HO-1), Hsp70, and Hsp60 as well as thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. We found increased levels of pentosidine (P < 0.01), DNPH (P < 0.05 and P < 0.01), HNE (P < 0.05 and P < 0.01), and F2-isoprostanes (P < 0.01) in all the samples from type 2 diabetic patients with nephropathy with respect to control group. This was paralleled by a significant induction of cellular HO-1, Hsp60, Hsp70, and TrxR-1 (P < 0.05 and P < 0.01). A significant upregulation of both HO-1 and Hsp70 has been detected also in lymphocytes from type 2 diabetic patients without uraemia. Significant positive correlations between DNPH and Hsp60, as well as between the degree of renal failure and HO-1 or Hsp70, also have been found in diabetic uremic subjects. In conclusion, patients affected by type 2 diabetes complicated with nephropathy are under condition of systemic oxidative stress, and the induction of Hsp and TrxR-1 is a maintained response in counteracting the intracellular pro-oxidant status.


Molecular Nutrition & Food Research | 2008

Curcumin and the cellular stress response in free radical-related diseases

Vittorio Calabrese; Timothy E. Bates; Cesare Mancuso; Carolin Cornelius; Bernardo Ventimiglia; Maria Teresa Cambria; Laura Di Renzo; Antonino De Lorenzo; Albena T. Dinkova-Kostova

Free radicals play a main pathogenic role in several human diseases such as neurodegenerative disorders, diabetes, and cancer. Although there has been progress in treatment of these diseases, the development of important side effects may complicate the therapeutic course. Curcumin, a well known spice commonly used in India to make foods colored and flavored, is also used in traditional medicine to treat mild or moderate human diseases. In the recent years, a growing body of literature has unraveled the antioxidant, anticarcinogenic, and antinfectious activity of curcumin based on the ability of this compound to regulate a number of cellular signal transduction pathways. These promising data obtained in vitro are now being translated to the clinic and more than ten clinical trials are currently ongoing worldwide. This review outlines the biological activities of curcumin and discusses its potential use in the prevention and treatment of human diseases.


Frontiers in Bioscience | 2009

Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases

Vittorio Calabrese; Carolin Cornelius; Cesare Mancuso; Eugenio Barone; Stella Calafato; Timothy E. Bates; Enrico Rizzarelli; Albena T. Dinkova Kostova

The ability of a cell to counteract stressful conditions, known as cellular stress response, requires the activation of pro-survival pathways and the production of molecules with anti-oxidant, anti-apoptotic or pro-apoptotic activities. Among the cellular pathways conferring protection against oxidative stress, a key role is played by vitagenes, which include heat shock proteins (Hsps) heme oxygenase-1 and Hsp70, as well as the thioredoxin/thioredoxin reductase system. Heat shock response contributes to establish a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Dietary antioxidants, such as curcumin, L-carnitine/acetyl-L-carnitine and carnosine have recently been demonstrated in vitro to be neuroprotective through the activation of hormetic pathways, including vitagenes. In the present review we discuss the importance of vitagenes in the cellular stress response and analyse, from a pharmacological point of view, the potential use of dietary antioxidants in the treatment of neurodegenerative disorders in humans.


Biochimica et Biophysica Acta | 2012

Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes.

Vittorio Calabrese; Carolin Cornelius; V. Leso; A. Trovato-Salinaro; B. Ventimiglia; M. Cavallaro; M. Scuto; Serena Rizza; L. Zanoli; S. Neri; P. Castellino

Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.

Collaboration


Dive into the Carolin Cornelius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward J. Calabrese

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Cesare Mancuso

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge