Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ch. Leinert is active.

Publication


Featured researches published by Ch. Leinert.


The Astrophysical Journal | 1995

A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions

Michal Simon; Andrea M. Ghez; Ch. Leinert; L. Cassar; W. P. Chen; Robert R. Howell; R. Jameson; K. Matthews; G. Neugebauer; A. Richichi

We present an IR lunar occultation and direct imaging search for companions in the Ophiuchus star-forming region and update a similar search of the Taurus region. The search is sensitive to companions in the angular separation range 0.005-10 sec. In Ophiuchus, we surveyed 35 young star targets; this sample contains at least 10 binaries, two triples, and one quadruple. Ten of the companion stars are newly discovered. In Taurus, the survey now includes 47 systems among which there are at least 22 binaries and four triples. Only two companion stars are newly identified because there is strong overlap with prior work. All the triples and quadruple are hierarchical. The observed binary frequency in Ophiuchus, in the 3-1400 AU range of separations, is at least 1.1 +/- 0.3 that of the nearby solar-like stars. This value is a lower bound because we make no corrections for incompleteness. In Taurus, in the same range of separations, the observed binary frequency is at least 1.6 +/- 0.3 that of the nearby solar-like stars. This value extends Ghez et al.s (1993) and Leinerts et al.s (1993) determination of an excess binary frequency to 3 AU separation. We used the weak-line T Tauri star/T Tauri star (WT/TT) type and the K-L color index to distinguish between systems with and without inner disks. We find no convincing difference in the binary frequency or distribution of separations of the systems with and without inner disks. The 1.3 mm continuum emission of the single systems exceeds that of the multiples suggesting that their extensive outer disks are more massive. The specific angular momenta of the binaries overlap those of molecular cloud cores measured by Goodman et al. (1993).


Astronomy and Astrophysics | 2007

Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy

Konrad R. W. Tristram; Klaus Meisenheimer; W. Jaffe; M. Schartmann; H.-W. Rix; Ch. Leinert; S. Morel; Markus Wittkowski; H. J. A. Röttgering; G. Perrin; B. Lopez; D. Raban; W. D. Cotton; U. Graser; Francesco Paresce; Th. Henning

Aims. To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared. Methods. Observations were obtained with the MIDI instrument at the Very Large Telescope Interferometer. The 21 visibility points recorded are dispersed with a spectral resolution of λ/δλ ≈ 30 in the wavelength range from 8 to 13 µm. To interpret the data we used a stepwise approach of modelling with increasing complexity. The final model consists of two black body Gaussian distributions with dust extinction. Results. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 µm in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk of Lacc = 10 10 L� , which corresponds to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Conclusions. Based on a great leap forward in the quality and quantity of interferometric data, our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or “clumpy”.


Astronomy and Astrophysics | 2007

High spatial resolution mid-infrared observations of the low-mass young star TW Hydrae

Th. Ratzka; Ch. Leinert; Th. Henning; Jeroen Bouwman; C. P. Dullemond; W. Jaffe

Aims. We want to improve knowledge of the structure of the inner few AU of the circumstellar disk around the nearby T Tauri star TW Hya. Earlier studies have suggested the existence of a large inner hole, possibly caused by interactions with a growing protoplanet. Methods. We used interferometric observations in the N-band obtained with the MIDI instrument on the Very Large Telescope Interferometer, together with 10 µm spectra recorded by the infrared satellite Spitzer. The fact that we were able to determine N-band correlated fluxes and visibilities for this comparatively faint source shows that mid-infrared interferometry can be applied to a large number of low-mass young stellar objects. Results. The mid-infrared spectra obtained with Spitzer reveal emission lines from H I (6–5), H I (7–6), and [Ne II] and show that over 90% of the dust we see in this wavelength regime is amorphous. According to the correlated flux measured with MIDI, most of the crystalline material is in the inner, unresolved part of the disk, about 1 AU in radius. The visibilities exclude the existence of a very large (3−4 AU radius) inner hole in the circumstellar disk of TW Hya, which was required in earlier models. We propose instead a geometry of the inner disk where an inner hole still exists, but at a much reduced radius, with the transition from zero to full disk height between 0.5 and 0.8 AU, and with an optically thin distribution of dust inside. Such a model can comply with SED and mid-infrared visibilities, as well as with visibility and extended emission observed in the near-infrared at 2 µm. If a massive planet was the reason for this inner hole, as has been speculated, its orbit would have to be closer to the star than 0.3 AU. Alternatively, we may be witnessing the end of the accretion phase and an early phase of an inward-out dispersal of the circumstellar disk.


The Astrophysical Journal | 1997

The Infrared Companions of T Tauri Stars

C. D. Koresko; T. M. Herbst; Ch. Leinert

The infrared companions (IRCs) associated with several normal low-mass pre-main-sequence (T Tauri) stars pose an interesting problem for theories of binary star formation. The IRCs have very low infrared color temperatures and large infrared excesses, which have led observers to suggest that they may be less evolved objects such as protostars. This paper presents an attempt to understand the IRCs as a class by examining a broad range of observations and applying simple arguments and models. We propose that the IRCs may represent relatively normal young low-mass stars experiencing episodes of enhanced circumstellar extinction, possibly due to rapid accretion of disk material perturbed by their gravitational influence at aphelion or perihelion.


Astronomy and Astrophysics | 2001

Broadband infrared photometry of comet Hale-Bopp with ISOPHOT

E. Grün; Martha S. Hanner; S. B. Peschke; T. Müller; H. Boehnhardt; T. Y. Brooke; Humberto Campins; J. Crovisier; C. Delahodde; I. Heinrichsen; H. U. Keller; R. F. Knacke; Harald Krüger; P. Lamy; Ch. Leinert; Dietrich Lemke; C. M. Lisse; Michael Müller; D. J. Osip; M. Solc; Manfred Stickel; Mark V. Sykes; V. Vanysek; John C. Zarnecki

Comet Hale-Bopp was observed ve times with ISOPHOT, the photometer on board ESAs Infrared Space Observatory (ISO) between 4.6 and 2.8 AU. Each time, broadband photometry was performed using 4 dierent detectors, 5 apertures and 10 lters covering the range between 3.6 and 170 m. Background ob- servations were performed with identical instrument settings at the same positions on the sky several days after the comet observations. The observation strategy and the data reduction steps are described in some detail, including the techniques to correct for variable detector responsivity. The resulting inband power values of the Hale-Bopp observations and their uncertainties are given. The mean uncertainty is 25%. The nal fluxes were computed, taking into account the zodiacal background, possible oset of the comets position from the center of the aperture, the brightness distribution within the coma, and the spectral energy distribution of the comets emission. Strong thermal emission from a broad size distribution of dust particles was detected in all of the data sets, even at r =4 :6{4:9 AU pre-perihelion and 3.9 AU post-perihelion; the total thermal energy varied as r 3 . The 7.3{12.8 m color temperature was1.5 times the blackbody temperature, higher than that observed in any other comet. Silicate features at 10 and 25 m were prominent in all 5 data sets, the largest heliocentric distances that silicate emission has been detected in a comet. The presence of crystalline water ice grains is suggested from the 60 m excess emission at 4.6{4.9 AU, consistent with the observed QOH if the icy grains were slightly warmer than an equilibrium blackbody. The average albedo of the dust is higher than that of comet P/Halley, but lower than other albedo measurements for Hale-Bopp nearer perihelion. There is no evidence for a component of cold, bright icy grains enhancing the scattered light at 4.6 AU. Simple models for a mixture of silicate and absorbing grains were t to the ISO spectra and photometry at 2.8 AU. The observed flux at >100 mr equires a size distribution in which most of the mass is concentrated in large particles. Dust production rates of order 1:5 10 5 kg s 1 at 2.8 AU and 3 10 4 kg s 1 at 4.6 AU have been found. They correspond to dust to gas mass ratios of 6 to 10.


Applied Optics | 1974

Stray light suppression in optical space experiments.

Ch. Leinert; D. Klüppelberg

Measurements of stray light suppression with mirrors, lenses, and baffle systems from four zodiacal light and one noctilucent cloud space experiments are reported. The method used to derive the total stray light suppression from these measurements is given. The predicted residual stray light intensity of about 10(-11) sr(-1) to 10(-10) sr(-1) corresponds to approximately 1% of the zodiacal light intensity and is confirmed by the available inflight results. Therefore accurate photometry of the zodiacal light is possible from a sunlit rocket or satellite.


Astronomy and Astrophysics | 2008

The T Tauri star RYTauri as a case study of the inner regions of circumstellar dust disks

A. Schegerer; Sebastian Wolf; Th. Ratzka; Ch. Leinert

Aims. We study the inner region (∼1.0 AU up to a few 10 AUs) of the circumstellar disk around the “classical” T Tauri star RY Tau. Our aim is to find a physical description satisfying the available interferometric data, obtained with the mid-infrared interferometric instrument at the Very Large Telescope Interferometer, as well as the spectral energy distribution in the visible to millimeter wavelength range. We also compare the findings with the results of similar studies, including those of intermediate-mass Herbig Ae/Be stars. Methods. Our analysis is done within the framework of a passively heated circumstellar disk, which is optionally supplemented by the effects of accretion and an added envelope. To achieve a more consistent and realistic model, we used our continuum transfer code MC3D. In addition, we studied the shape of the 10 µm silicate emission feature in terms of the underlying dust population, both for single-dish and for interferometric measurements. Results. We show that a modestly flaring disk model with accretion can explain both the observed spectral energy distribution and the mid-infrared visibilities obtained with the mid-infrared infrared instrument. We found an interesting ambiguity: a circumstellar active disk model with an added envelope, and a lower accretion rate than in the active disk model without envelope, could represent the observations equally as well. This type of model with the envelope should be considered a viable alternative in future models of other T Tauri stars. The approach of a disk with a puffed-up inner rim wall and the influence of a stellar companion is also discussed. We also investigate the influence of various fit parameters on the outcome of the radiative transfer modeling. From the study of the silicate emission feature we see evidence for dust evolution in a T Tauri star, with a decreasing fraction of small amorphous and an increasing fraction of crystalline particles closer to the star.


Astronomy and Astrophysics | 2015

The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps

J. Menu; R. van Boekel; Th. Henning; Ch. Leinert; C. Waelkens; L. B. F. M. Waters

The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. The different groups of objects can be expected to have different structural signatures in high-angular-resolution data. Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We model the large set of observations with simple geometric models. A population of radiative-transfer models is synthesized for interpreting the mid-infrared signatures. Objects with similar luminosities show very different disk sizes in the mid-infrared. Restricting to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional. We find that several group II objects have mid-infrared sizes and colors overlapping with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Flat disks with gaps are most likely descendants of flat disks without gaps. Gaps, potentially related to the formation of massive bodies, may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks, or some of them may further evolve into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk.


Astronomy and Astrophysics | 2006

High angular resolution n-band observation of the silicate carbon star IRAS08002-3803 with the VLTI/MIDI instrument : Dusty environment spatially resolved

Keiichi Ohnaka; T. Driebe; K.-H. Hofmann; Ch. Leinert; S. Morel; Francesco Paresce; Th. Preibisch; A. Richichi; D. Schertl; M. Schöller; L. B. F. M. Waters; G. Weigelt; Markus Wittkowski

We present the results of N-band spectro-interferometric observations of the silicate carbon star IRAS08002-3803 with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO). The observations were carried out using two unit telescopes (UT2 and UT3) with projected baseline lengths ranging from 39 to 47 m. Our observations of IRAS08002-3803 have spatially resolved the dusty environment of a silicate carbon star for the first time and revealed an unexpected wavelength dependence of the angular size in the N band: the uniform-disk diameter is found to be constant and ∼36 mas (72 R� ) between 8 and 10 µm, while it steeply increases longward of 10 µm to reach ∼53 mas (106 R� )a t 13µm. Model calculations with our Monte Carlo radiative transfer code show that neither spherical shell models nor axisymmetric disk models consisting of silicate grains alone can simultaneously explain the observed wavelength dependence of the visibility and the spectral energy distribution (SED). We propose that the circumstellar environment of IRAS08002-3803 may consist of two grain species coexisting in the disk: silicate and a second grain species, for which we consider amorphous carbon, large silicate grains, and metallic iron grains. Comparison of the observed visibilities and SED with our models shows that such disk models can fairly – though not entirely satisfactorily – reproduce the observed SED and N-band visibilities. Our MIDI observations and the radiative transfer calculations lend support to the picture where oxygen-rich material around IRAS08002-3803 is stored in a circumbinary disk surrounding the carbon-rich primary star and its putative low-luminosity companion.


Astronomy and Astrophysics | 2005

Mid-infrared interferometry of the Mira variable RR Sco with the VLTI MIDI instrument

Keiichi Ohnaka; J. Bergeat; T. Driebe; U. Graser; K.-H. Hofmann; R. Köhler; Ch. Leinert; B. Lopez; F. Malbet; S. Morel; Francesco Paresce; G. Perrin; Th. Preibisch; A. Richichi; D. Schertl; M. Schöller; H. Sol; G. Weigelt; Markus Wittkowski

We present the results of the first mid-infrared interferometric observations of the Mira variable RR Sco with the MID-infrared Interferometer (MIDI) coupled to the European Southern Observatorys (ESO) Very Large Telescope Interferometer (VLTI), together with K-band observations using VLTI VINCI. The observations were carried out in June 2003, when the variability phase of the object was 0.6, using two unit telescopes (UT1 and UT3), as part of the Science Demonstration Time (SDT) program of the instrument. Projected baseline lengths ranged from 73 to 102 m, and a spectral resolution of 30 was employed in the observations, which enabled us to obtain the wavelength dependence of the visibility in the region be- tween 8 and 13 µm. The uniform-disk diameter was found to be 18 mas between 8 and 10 µm, while it gradually increases at wavelengths longer than 10 µm to reach 24 mas at 13 µm. The uniform-disk diameter between 8 and 13 µm is significantly larger than the K-band uniform-disk diameter of 10.2 ± 0.5 mas measured using VLTI VINCI with projected baseline lengths of 15-16 m, three weeks after the MIDI observations. Our model calculations show that optically thick emission from a warm molecular envelope consisting of H2O and SiO can cause the apparent mid-infrared diameter to be much larger than the con- tinuum diameter. We find that the warm molecular envelope model extending to ∼2.3 Rwith a temperature of ∼1400 K and column densities of H2 Oa nd SiO of 3× 10 21 cm −2 and 1 × 10 20 cm −2 , respectively, can reproduce the observed uniform-disk diameters between 8 and 10 µm. The observed increase of the uniform-disk diameter longward of 10 µm can be explained by an optically thin dust shell consisting of silicate and corundum grains. The inner radius of the optically thin dust shell is derived to be 7-8 Rwith a temperature of ∼700 K, and the optical depth at 10 µm is found to be ∼0.025.

Collaboration


Dive into the Ch. Leinert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Chesneau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge