Chaaya Iyengar Raje
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaaya Iyengar Raje.
Journal of Biological Chemistry | 2007
Chaaya Iyengar Raje; Santosh Kumar; Arti Harle; Jagpreet S. Nanda; Manoj Raje
The reticuloendothelial system plays a major role in iron metabolism. Despite this, the manner in which macrophages handle iron remains poorly understood. Mammalian cells utilize transferrin-dependent mechanisms to acquire iron via transferrin receptors 1 and 2 (TfR1 and TfR2) by receptor-mediated endocytosis. Here, we show for the first time that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is localized on human and murine macrophage cell surface. The expression of this surface GAPDH is regulated by the availability of iron in the medium. We further demonstrate that this GAPDH interacts with transferrin and the GAPDH-transferrin complex is subsequently internalized into the early endosomes. Our work sheds new light on the mechanisms involved in regulation of iron, vital for controlling numerous diseases and maintaining normal immune function. Thus, we propose an entirely new avenue for investigation with respect to transferrin uptake and regulation mechanisms in macrophages.
Nature Communications | 2014
Vishant Mahendra Boradia; Himanshu Malhotra; Janak Shrikant Thakkar; Vikas A. Tillu; Bhavana Vuppala; Pravinkumar Patil; Navdeep Sheokand; Prerna Sharma; Anoop Singh Chauhan; Manoj Raje; Chaaya Iyengar Raje
Mycobacterium tuberculosis (M.tb), which requires iron for survival, acquires this element by synthesizing iron-binding molecules known as siderophores and by recruiting a host iron-transport protein, transferrin, to the phagosome. The siderophores extract iron from transferrin and transport it into the bacterium. Here we describe an additional mechanism for iron acquisition, consisting of an M.tb protein that drives transport of human holo-transferrin into M.tb cells. The pathogenic strain M.tb H37Rv expresses several proteins that can bind human holo-transferrin. One of these proteins is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Rv1436), which is present on the surface of M.tb and its relative Mycobacterium smegmatis. Overexpression of GAPDH results in increased transferrin binding to M.tb cells and iron uptake. Human transferrin is internalized across the mycobacterial cell wall in a GAPDH-dependent manner within infected macrophages.
Biochemistry and Cell Biology | 2012
Pooja Rawat; Santosh Kumar; Navdeep Sheokand; Chaaya Iyengar Raje; Manoj Raje
Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages. GAPDH is a well-known moonlighting protein, and previous work from our laboratory has indicated its localization on macrophage cell surfaces, wherein it functions as a transferrin (Tf) receptor. The K(D) value for GAPDH-lactoferrin interaction was determined to be 43.8 nmol/L. Utilizing co-immunoprecipitation, immunoflorescence, and immunogold labelling electron microscopy we could demonstrate the trafficking of lactoferrin to the endosomal compartment along with GAPDH. We also found that upon iron depletion the binding of lactoferrin to macrophage cell surface is enhanced. This correlated with an increased expression of surface GAPDH, while other known lactoferrin receptors CD14 and lipoprotein receptor-related protein (LRP) were found to remain unaltered in expression levels. This suggests that upon iron depletion, cells prefer to use GAPDH to acquire lactoferrin. As GAPDH is an ubiquitously expressed molecule, its function as a receptor for lactoferrin may not be limited to macrophages.
The International Journal of Biochemistry & Cell Biology | 2012
Santosh Kumar; Navdeep Sheokand; Mayur Anant Mhadeshwar; Chaaya Iyengar Raje; Manoj Raje
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH. These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.
The International Journal of Biochemistry & Cell Biology | 2011
Mahesh Kathania; Chaaya Iyengar Raje; Manoj Raje; Rajesh Kumar Dutta; Sekhar Majumdar
Expression of Bcl-2 family protein, Bfl-1/A1 has been found to differ considerably amongst macrophages infected with virulent Mycobacterium tuberculosis H37Rv or with avirulent M. tuberculosis H37Ra. Present work was undertaken to deduce the significance of differential expression of Bfl-1/A1 in the outcome of mycobacterial infection. We have studied the role of Bfl-1/A1 particularly in autophagy formation in tubercle bacilli infected cells since autophagy has been recognized as a component of innate immunity against pathogenic mycobacteria. First, we have confirmed that upon infection virulent strain H37Rv retain Bfl-1/A1 for longer period and impose autophagosome maturation block within infected cells as evident from confocal microscopy. Moreover, down regulation of Bfl-1/A1 by siRNA induced autophagy formation and reduced bacterial growth. Furthermore, even the avirulent strain H37Ra resist autophagosome maturation and survive if the cellular level of Bfl-1 is maintained in THP-1 cells by stable transfection (Bfl-1 overexpressing cells). No noteworthy difference in mTOR expression was observed between normal THP-1 and Bfl-1 overexpressing THP-1 cells infected with either strain of mycobacteria. Interestingly, we found that not only mTOR but also Bfl-1/A1 is involved in rapamycin induced autophagy in mycobacteria infected macrophages. We have found that Bfl-1 physically interacts with Beclin 1 in Bfl-1 overexpressing THP-1 as well as in H37Rv infected THP-1 cells as they co-precipitated. Taken together, our results clearly demonstrated that Bfl-1/A1 negatively regulates autophagy and expression of Bfl-1/A1 in H37Rv infected macrophages provides the bacteria a survival strategy to overcome host defense.
Journal of Cell Science | 2014
Navdeep Sheokand; Himanshu Malhotra; Santosh Kumar; Vikas A. Tillu; Anoop Singh Chauhan; Chaaya Iyengar Raje; Manoj Raje
ABSTRACT Iron (Fe2+, Fe3+) homeostasis is a tightly regulated process, involving precise control of iron influx and egress from cells. Although the mechanisms of its import into cells by iron carrier molecules are well characterized, iron export remains poorly understood. The current paradigm envisages unique functions associated with specialized macromolecules for its cellular import (transferrin receptors) or export (ferroportin, also known as SLC40A1). Previous studies have revealed that iron-depleted cells recruit glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a multitasking, ‘moonlighting’ protein, to their surface for internalization of the iron carrier holotransferrin. Here, we report that under the converse condition of intracellular iron excess, cells switch the isoform of GAPDH on their surface to one that now recruits iron-free apotransferrin in close association with ferroportin to facilitate the efflux of iron. Increased expression of surface GAPDH correlated with increased apotransferrin binding and enhanced iron export from cells, a capability lost in GAPDH-knockdown cells. These findings were confirmed in vivo utilizing a rodent model of iron overload. Besides identifying for the first time an apotransferrin receptor, our work uncovers the two-way switching of multifunctional molecules to manage cellular micronutrient requirements.
Biochimica et Biophysica Acta | 2013
Navdeep Sheokand; Santosh Kumar; Himanshu Malhotra; Vikas A. Tillu; Chaaya Iyengar Raje; Manoj Raje
BACKGROUND The long held view is that mammalian cells obtain transferrin (Tf) bound iron utilizing specialized membrane anchored receptors. Here we report that, during increased iron demand, cells secrete the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which enhances cellular uptake of Tf and iron. METHODS These observations could be mimicked by utilizing purified GAPDH injected into mice as well as when supplemented in culture medium of model cell lines and primary cell types that play a key role in iron metabolism. Transferrin and iron delivery was evaluated by biochemical, biophysical and imaging based assays. RESULTS This mode of iron uptake is a saturable, energy dependent pathway, utilizing raft as well as non-raft domains of the cell membrane and also involves the membrane protein CD87 (uPAR). Tf internalized by this mode is also catabolized. CONCLUSIONS Our research demonstrates that, even in cell types that express the known surface receptor based mechanism for transferrin uptake, more transferrin is delivered by this route which represents a hidden dimension of iron homeostasis. GENERAL SIGNIFICANCE Iron is an essential trace metal for practically all living organisms however its acquisition presents major challenges. The current paradigm is that living organisms have developed well orchestrated and evolved mechanisms involving iron carrier molecules and their specific receptors to regulate its absorption, transport, storage and mobilization. Our research uncovers a hidden and primitive pathway of bulk iron trafficking involving a secreted receptor that is a multifunctional glycolytic enzyme that has implications in pathological conditions such as infectious diseases and cancer.
Biochemical Society Transactions | 2014
Vishant Mahendra Boradia; Manoj Raje; Chaaya Iyengar Raje
Iron is essential for the survival of both prokaryotic and eukaryotic organisms. It functions as a cofactor for several vital enzymes and iron deprivation is fatal to cells. However, at the same time, excess amounts of iron are also toxic to cells due to the formation of free radicals via the Fenton reaction. As a consequence of its double-edged behaviour, the uptake and regulation of iron involves an intricate balance of acquisition, trafficking, recycling and shuffling between various tissues and organs. This is accomplished by differential regulation of genes involving numerous proteins and enzymes. Several of the proteins identified in these processes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aconitase and lactoferrin (Lf), possess multiple functions within the cell. Such proteins are referred to as moonlighting or multifunctional proteins, whereby proteins initially thought to possess a single well-established function have subsequently been discovered to exhibit alternative functions. In many cases, these multiple functions are conserved across species.
The FASEB Journal | 2017
Anoop Singh Chauhan; Manoj Kumar; Surbhi Chaudhary; Anil Patidar; Asmita Dhiman; Navdeep Sheokand; Himanshu Malhotra; Chaaya Iyengar Raje; Manoj Raje
Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg‐dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.—Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. FASEB J. 31, 2638–2648 (2017). www.fasebj.org
Scientific Reports | 2016
Anoop Singh Chauhan; Pooja Rawat; Himanshu Malhotra; Navdeep Sheokand; Manoj Kumar; Anil Patidar; Surbhi Chaudhary; Priyanka Jakhar; Chaaya Iyengar Raje; Manoj Raje
Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect’s an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.