Navdeep Sheokand
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Navdeep Sheokand.
Nature Communications | 2014
Vishant Mahendra Boradia; Himanshu Malhotra; Janak Shrikant Thakkar; Vikas A. Tillu; Bhavana Vuppala; Pravinkumar Patil; Navdeep Sheokand; Prerna Sharma; Anoop Singh Chauhan; Manoj Raje; Chaaya Iyengar Raje
Mycobacterium tuberculosis (M.tb), which requires iron for survival, acquires this element by synthesizing iron-binding molecules known as siderophores and by recruiting a host iron-transport protein, transferrin, to the phagosome. The siderophores extract iron from transferrin and transport it into the bacterium. Here we describe an additional mechanism for iron acquisition, consisting of an M.tb protein that drives transport of human holo-transferrin into M.tb cells. The pathogenic strain M.tb H37Rv expresses several proteins that can bind human holo-transferrin. One of these proteins is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Rv1436), which is present on the surface of M.tb and its relative Mycobacterium smegmatis. Overexpression of GAPDH results in increased transferrin binding to M.tb cells and iron uptake. Human transferrin is internalized across the mycobacterial cell wall in a GAPDH-dependent manner within infected macrophages.
Biochemistry and Cell Biology | 2012
Pooja Rawat; Santosh Kumar; Navdeep Sheokand; Chaaya Iyengar Raje; Manoj Raje
Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages. GAPDH is a well-known moonlighting protein, and previous work from our laboratory has indicated its localization on macrophage cell surfaces, wherein it functions as a transferrin (Tf) receptor. The K(D) value for GAPDH-lactoferrin interaction was determined to be 43.8 nmol/L. Utilizing co-immunoprecipitation, immunoflorescence, and immunogold labelling electron microscopy we could demonstrate the trafficking of lactoferrin to the endosomal compartment along with GAPDH. We also found that upon iron depletion the binding of lactoferrin to macrophage cell surface is enhanced. This correlated with an increased expression of surface GAPDH, while other known lactoferrin receptors CD14 and lipoprotein receptor-related protein (LRP) were found to remain unaltered in expression levels. This suggests that upon iron depletion, cells prefer to use GAPDH to acquire lactoferrin. As GAPDH is an ubiquitously expressed molecule, its function as a receptor for lactoferrin may not be limited to macrophages.
The International Journal of Biochemistry & Cell Biology | 2012
Santosh Kumar; Navdeep Sheokand; Mayur Anant Mhadeshwar; Chaaya Iyengar Raje; Manoj Raje
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH. These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.
Journal of Cell Science | 2014
Navdeep Sheokand; Himanshu Malhotra; Santosh Kumar; Vikas A. Tillu; Anoop Singh Chauhan; Chaaya Iyengar Raje; Manoj Raje
ABSTRACT Iron (Fe2+, Fe3+) homeostasis is a tightly regulated process, involving precise control of iron influx and egress from cells. Although the mechanisms of its import into cells by iron carrier molecules are well characterized, iron export remains poorly understood. The current paradigm envisages unique functions associated with specialized macromolecules for its cellular import (transferrin receptors) or export (ferroportin, also known as SLC40A1). Previous studies have revealed that iron-depleted cells recruit glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a multitasking, ‘moonlighting’ protein, to their surface for internalization of the iron carrier holotransferrin. Here, we report that under the converse condition of intracellular iron excess, cells switch the isoform of GAPDH on their surface to one that now recruits iron-free apotransferrin in close association with ferroportin to facilitate the efflux of iron. Increased expression of surface GAPDH correlated with increased apotransferrin binding and enhanced iron export from cells, a capability lost in GAPDH-knockdown cells. These findings were confirmed in vivo utilizing a rodent model of iron overload. Besides identifying for the first time an apotransferrin receptor, our work uncovers the two-way switching of multifunctional molecules to manage cellular micronutrient requirements.
Biochimica et Biophysica Acta | 2013
Navdeep Sheokand; Santosh Kumar; Himanshu Malhotra; Vikas A. Tillu; Chaaya Iyengar Raje; Manoj Raje
BACKGROUND The long held view is that mammalian cells obtain transferrin (Tf) bound iron utilizing specialized membrane anchored receptors. Here we report that, during increased iron demand, cells secrete the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which enhances cellular uptake of Tf and iron. METHODS These observations could be mimicked by utilizing purified GAPDH injected into mice as well as when supplemented in culture medium of model cell lines and primary cell types that play a key role in iron metabolism. Transferrin and iron delivery was evaluated by biochemical, biophysical and imaging based assays. RESULTS This mode of iron uptake is a saturable, energy dependent pathway, utilizing raft as well as non-raft domains of the cell membrane and also involves the membrane protein CD87 (uPAR). Tf internalized by this mode is also catabolized. CONCLUSIONS Our research demonstrates that, even in cell types that express the known surface receptor based mechanism for transferrin uptake, more transferrin is delivered by this route which represents a hidden dimension of iron homeostasis. GENERAL SIGNIFICANCE Iron is an essential trace metal for practically all living organisms however its acquisition presents major challenges. The current paradigm is that living organisms have developed well orchestrated and evolved mechanisms involving iron carrier molecules and their specific receptors to regulate its absorption, transport, storage and mobilization. Our research uncovers a hidden and primitive pathway of bulk iron trafficking involving a secreted receptor that is a multifunctional glycolytic enzyme that has implications in pathological conditions such as infectious diseases and cancer.
The FASEB Journal | 2017
Anoop Singh Chauhan; Manoj Kumar; Surbhi Chaudhary; Anil Patidar; Asmita Dhiman; Navdeep Sheokand; Himanshu Malhotra; Chaaya Iyengar Raje; Manoj Raje
Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg‐dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.—Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. FASEB J. 31, 2638–2648 (2017). www.fasebj.org
Scientific Reports | 2016
Anoop Singh Chauhan; Pooja Rawat; Himanshu Malhotra; Navdeep Sheokand; Manoj Kumar; Anil Patidar; Surbhi Chaudhary; Priyanka Jakhar; Chaaya Iyengar Raje; Manoj Raje
Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect’s an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.
Microbial Cell Factories | 2016
Vishant Mahendra Boradia; Pravinkumar Patil; Anushri Agnihotri; Ajay Kumar; Kalpesh Kumar Rajwadi; Ankit Sahu; Naveen Bhagath; Navdeep Sheokand; Manoj Kumar; Himanshu Malhotra; Rachita Patkar; Navi Hasan; Manoj Raje; Chaaya Iyengar Raje
BackgroundObtaining sufficient quantities of recombinant M.tb proteins using traditional approaches is often unsuccessful. Several enzymes of the glycolytic cycle are known to be multifunctional, however relatively few enzymes from M.tb H37Rv have been characterized in the context of their enzymatic and pleiotropic roles. One of the primary reasons is the difficulty in obtaining sufficient amounts of functionally active protein.ResultsIn the current study, using M.tb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) we demonstrate that expression in E. coli or M. smegmatis results in insolubility and improper subcellular localization. In addition, expression of such conserved multisubunit proteins poses the problem of heteromerization with host homologues. Importantly the expression host dramatically affected the yield and functionality of GAPDH in terms of both enzymatic activity and moonlighting function (transferrin binding). The applicability of this system was further confirmed using two additional enzymes i.e. M.tb Pyruvate kinase and Enolase.ConclusionsOur studies establish that the attenuated strain M.tb H37Ra is a suitable host for the expression of highly hydrophobic, conserved, multimeric proteins of M.tb H37Rv. Significantly, this expression host overcomes the limitations of E. coli and M. smegmatis expression and yields recombinant protein that is qualitatively superior to that obtained by traditional methods. The current study highlights the fact that protein functionality (which is an an essential requirement for all in vitro assays and drug development) may be altered by the choice of expression host.
Journal of Cell Science | 2016
Navdeep Sheokand; Himanshu Malhotra; Anoop Singh Chauhan; Manoj Kumar; Surbhi Chaudhary; Anil Patidar; Vishant Mahendra Boradia; Chaaya Iyengar Raje; Manoj Raje
ABSTRACT Iron (Fe), a vital micronutrient for all organisms, must be managed judiciously because both deficiency or excess can trigger severe pathology. Although cellular Fe import is well understood, its export is thought to be limited to transmembrane extrusion through ferroportin (also known as Slc40a1), the only known mammalian Fe exporter. Utilizing primary cells and cell lines (including those with no discernible expression of ferroportin on their surface), we demonstrate that upon Fe loading, the multifunctional enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is recruited to the cell surface, ‘treadmills’ apotransferrin in and out of the cell. Kinetic analysis utilizing labeled ligand, GAPDH-knockdown cells, 55Fe-labeled cells and pharmacological inhibitors of endocytosis confirmed GAPDH-dependent apotransferrin internalization as a prerequisite for cellular Fe export. These studies define an unusual rapid recycling process of retroendocytosis for cellular Fe extrusion, a process mirroring receptor mediated internalization that has never before been considered for maintenance of cellular cationic homeostasis. Modulation of this unusual pathway could provide insights for management of Fe overload disorders. Summary: We present evidence that retroendocytosis of apotransferrin mediated by multifunctional GAPDH extrudes excess cellular Fe in a mechanism reminiscent of pumping out of water by a reverse overshot water-wheel.
Journal of Biomedical Nanotechnology | 2016
Himanshu Malhotra; Navdeep Sheokand; Santosh Kumar; Anoop Singh Chauhan; Manoj Kumar; Priyanka Jakhar; Vishant Mahendra Boradia; Chaaya Iyengar Raje; Manoj Raje