Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad A. Glazer is active.

Publication


Featured researches published by Chad A. Glazer.


International Journal of Cancer | 2008

MicroRNA alterations in head and neck squamous cell carcinoma

Steven S. Chang; Wei Wen Jiang; Ian M. Smith; Luana Poeta; Shahnaz Begum; Chad A. Glazer; Shannon J C Shan; William H. Westra; David Sidransky; Joseph A. Califano

MicroRNAs (mirs) are small noncoding RNA molecules (∼22 nucleotides) that regulate posttranscriptional gene expression. Currently, there has not been a comprehensive study of their role in primary head and neck squamous cell carcinoma (HNSCC). To determine the role of mirs in HNSCC, we screened for altered microRNA expression in HNSCC primary tissue and cell lines. We then further tested the functional impact of alterations of specific mirs. An initial screening of 4 primary HNSCC, 4 normal mucosal controls and 4 HNSCC cell lines was analyzed for mature microRNA expression by microarray. Significance was determined using significance analysis of microarrays (SAM). Nine microRNAs were found by SAM to be upregulated or downregulated in tumor tissue including mir‐21, let‐7, 18, 29c, 142‐3p, 155, 146b (overexpressed) and 494 (underexpressed). Mir‐21 was validated by qRT‐PCR. Functional validation by growth assays was performed, further validating mir‐21. Transfection of mir‐21 into JHU‐011 and JHU‐012 cell lines showed a 39% increase in cell growth at 72 hr relative to controls (p < 0.05). Transfection of the inhibitor into JHU‐O12 cell lines showed a 92% decrease in cell growth relative to controls at 72 hr (p < 0.05). In addition, flow cytometry analysis of JHU‐012 cells 48 hr after mir‐21 inhibitor transfection showed a statistically significant increase in cytochrome c release and increased apoptosis. These differentially expressed microRNAs may be of interest as potential novel oncogenes and tumor suppressor genes in HNSCC. Mir‐21 is a putative oncogenic microRNA in head and neck cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck.

Shaoyu Zhou; Sushant Kachhap; Wenyue Sun; Guojun Wu; Alice Chuang; Luana Poeta; Lawson Grumbine; Suhail K. Mithani; Aditi Chatterjee; Wayne M. Koch; William H. Westra; Anirban Maitra; Chad A. Glazer; Michael A. Carducci; David Sidransky; Thomas McFate; Ajay Verma; Joseph A. Califano

Mitochondrial genomic mutations are found in a variety of human cancers; however, the frequency of mitochondrial DNA (mtDNA) mutations in coding regions remains poorly defined, and the functional effects of mitochondrial mutations found in primary human cancers are not well described. Using MitoChip, we sequenced the whole mitochondrial genome in 83 head and neck squamous cell carcinomas. Forty-one of 83 (49%) tumors contained mtDNA mutations. Mutations occurred within noncoding (D-loop) and coding regions. A nonrandom distribution of mutations was found throughout the mitochondrial enzyme complex components. Sequencing of margins with dysplasia demonstrated an identical nonconservative mitochondrial mutation (A76T in ND4L) as the tumor, suggesting a role of mtDNA mutation in tumor progression. Analysis of p53 status showed that mtDNA mutations correlated positively with p53 mutations (P < 0.002). To characterize biological function of the mtDNA mutations, we cloned NADH dehydrogenase subunit 2 (ND2) mutants based on primary tumor mutations. Expression of the nuclear-transcribed, mitochondrial-targeted ND2 mutants resulted in increased anchorage-dependent and -independent growth, which was accompanied by increased reactive oxygen species production and an aerobic glycolytic metabolic phenotype with hypoxia-inducible factor (HIF)-1α induction that is reversible by ascorbate. Cancer-specific mitochondrial mutations may contribute to development of a malignant phenotype by direct genotoxic effects from increased reactive oxygen species production as well as induction of aerobic glycolysis and growth promotion.


PLOS ONE | 2009

Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer

Ian M. Smith; Chad A. Glazer; Suhail K. Mithani; Michael F. Ochs; Wenyue Sun; Sheetal Bhan; Alexander A. Vostrov; Ziedulla Abdullaev; Victor Lobanenkov; Andrew Elisha Gray; Chunyan Liu; Steven S. Chang; Kimberly L. Ostrow; William H. Westra; Shahnaz Begum; Mousumi Dhara; Joseph A. Califano

Background Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.


Clinical Cancer Research | 2010

TKTL1 Is Activated by Promoter Hypomethylation and Contributes to Head and Neck Squamous Cell Carcinoma Carcinogenesis through Increased Aerobic Glycolysis and HIF1α Stabilization

Wenyue Sun; Yan Liu; Chad A. Glazer; Chunbo Shao; Sheetal Bhan; Semra Demokan; Ming Zhao; Michelle A. Rudek; Patrick K. Ha; Joseph A. Califano

Purpose: This study aims to investigate the role of the aberrant expression of Transkelolase-like 1 (TKTL1) in head and neck squamous cell carcinoma (HNSCC) tumorigenesis and to characterize TKTL1 contribution to HNSCC tumorigenesis through aerobic glycolysis and HIF1α stabilization. Experimental Design: TKTL1 promoter hypomethylation and mRNA/protein aberrant expression were studied in human HNSCC tumor samples and normal mucosas. Oncogenic functions of TKTL1 were examined in HNSCC cell line panels and tumor xenograft models with TKTL1 expression construct. The metabolite levels of fructose-6-phosphate, glyceraldehydes-3-phosphate, pyruvate, lactate, and the levels of HIF1α protein and its downsteam glycolytic targets were compared between the TKTL1-expressing and vehicle-expressing HNSCC cells. Meanwhile, the effects of HIF1α/glycolytic inhibitors were evaluated on the TKTL1 transfectants. Results: TKTL1 exhibits high frequency of promoter hypomethylation in HNSCC tumors compared with the normal mucosas, correlating with its overexpression in HNSCC. Overexpression of TKTL1 in HNSCC cells promoted cellular proliferation and enhanced tumor growth in vitro and in vivo. Overexpression of TKTL1 increased the production of fructose-6-phosphate and glyceraldehyde-3-phosphate, in turn elevating the production of pyruvate and lactate, resulting in the normoxic stabilization of the malignancy-promoting transcription factor HIF1α and the upregulation of downstream glycolytic enzymes. Notably, the reduction of TKTL1 expression decreased HIF1α accumulation and inhibition with HIF1α and/or the glycolysis inhibitor could abrogate the growth effects mediated by TKTL1 overexpression. Conclusion: TKTL1 is a novel candidate oncogene that is epigenetically activated by aberrant hypomethlation and contributes to a malignant phenotype through altered glycolytic metabolism and HIF1α accumulation. Clin Cancer Res; 16(3); 857–66


Oral Oncology | 2009

Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice.

Chad A. Glazer; Steven S. Chang; Patrick K. Ha; Joseph A. Califano

During the past decade, there has been a significant increase in knowledge regarding the molecular biology and epigenetics of head and neck squamous cell carcinoma (HNSCC). This has been aided by the steady development of new technology and novel techniques aimed at elucidating additional aberrant molecular alterations characteristic of HNSCC, including the advent of high throughput assays and the development of more sophisticated bioinformatics tools. In addition, advancements in the field of cancer epigenetics and microRNA have increased the complexity of understanding HNSCC tumorigenesis. These advances have lead to an increasing number of translational studies in the diagnosis, prognosis, and treatment of head and neck cancer. The end result is that molecular biomarkers, gene detection panels and targeted therapeutics are becoming a reality for the care of patients with HNSCC. In this article, we will focus on the many implications of this research as it pertains to clinical practice and the treatment of HNSCC patients.


Oral Oncology | 2009

Molecular techniques and genetic alterations in head and neck cancer

Patrick K. Ha; Steven S. Chang; Chad A. Glazer; Joseph A. Califano; David Sidransky

It is well known that cellular DNA alterations can lead to the formation of cancer, and there has been much discovery in the pathways involved in the development of head and neck squamous cell carcinoma (HNSCC). With novel genome-wide molecular assays, our ability to detect these abnormalities has increased. We now have a better understanding of the molecular complexity of HNSCC, but there is still much research to be done. In this review, we discuss the well described genetic alterations and touch on the newer findings, as well as some of the future directions of head and neck cancer research.


PLOS ONE | 2009

Integrative Discovery of Epigenetically Derepressed Cancer Testis Antigens in NSCLC

Chad A. Glazer; Ian M. Smith; Michael F. Ochs; Shahnaz Begum; William H. Westra; Steven S. Chang; Wenyue Sun; Sheetal Bhan; Zubair Khan; Steven A. Ahrendt; Joseph A. Califano

Background Cancer/testis antigens (CTAs) were first discovered as immunogenic targets normally expressed in germline cells, but differentially expressed in a variety of human cancers. In this study, we used an integrative epigenetic screening approach to identify coordinately expressed genes in human non-small cell lung cancer (NSCLC) whose transcription is driven by promoter demethylation. Methodology/Principal Findings Our screening approach found 290 significant genes from the over 47,000 transcripts incorporated in the Affymetrix Human Genome U133 Plus 2.0 expression array. Of the top 55 candidates, 10 showed both differential overexpression and promoter region hypomethylation in NSCLC. Surprisingly, 6 of the 10 genes discovered by this approach were CTAs. Using a separate cohort of primary tumor and normal tissue, we validated NSCLC promoter hypomethylation and increased expression by quantitative RT-PCR for all 10 genes. We noted significant, coordinated coexpression of multiple target genes, as well as coordinated promoter demethylation, in a large set of individual tumors that was associated with the SCC subtype of NSCLC. In addition, we identified 2 novel target genes that exhibited growth-promoting effects in multiple cell lines. Conclusions/Significance Coordinated promoter demethylation in NSCLC is associated with aberrant expression of CTAs and potential, novel candidate protooncogenes that can be identified using integrative discovery techniques. These findings have significant implications for discovery of novel CTAs and CT antigen directed immunotherapy.


Cancer Prevention Research | 2010

Endothelin receptor type B gene promoter hypermethylation in salivary rinses is independently associated with risk of oral cavity cancer and premalignancy.

Kavita M. Pattani; Zhe Zhang; Semra Demokan; Chad A. Glazer; Myriam Loyo; Steven N. Goodman; David Sidransky; Francisco Bermudez; Germain Jean-Charles; Thomas V. McCaffrey; Tapan A. Padhya; Joan Phelan; Silvia Spivakovsky; Helen Yoo Bowne; Judith D. Goldberg; Linda Rolnitzky; Miriam Robbins; A. Ross Kerr; David A. Sirois; Joseph A. Califano

Endothelin receptor type B (EDNRB) and kinesin family member 1A (KIF1A) are candidate tumor suppressor genes that are inactivated in cancers. In this study, we evaluated the promoter hypermethylation of EDNRB and KIF1A and their potential use for risk classification in prospectively collected salivary rinses from patients with premalignant/malignant oral cavity lesions. Quantitative methylation-specific PCR was performed to analyze the methylation status of EDNRB and KIF1A in salivary rinses of 191 patients. We proceeded to determine the association of methylation status with histologic diagnosis and estimate classification accuracy. On univariate analysis, diagnosis of dysplasia/cancer was associated with age and KIF1A or EDNRB methylation. Methylation of EDNRB highly correlated with that of KIF1A (P < 0.0001). On multivariable modeling, histologic diagnosis was independently associated with EDNRB (P = 0.0003) or KIF1A (P = 0.027) methylation. A subset of patients analyzed (n = 161) without prior biopsy-proven malignancy received clinical risk classification based on examination. On univariate analysis, EDNRB and risk classification were associated with diagnosis of dysplasia/cancer and remained significant on multivariate analysis (EDNRB: P = 0.047, risk classification: P = 0.008). Clinical risk classification identified dysplasia/cancer with a sensitivity of 71% and a specificity of 58%. The sensitivity of clinical risk classification combined with EDNRB methylation improved to 75%. EDNRB methylation in salivary rinses was independently associated with histologic diagnosis of premalignancy and malignancy and may have potential in classifying patients at risk for oral premalignant and malignant lesions in settings without access to a skilled dental practitioner. This may also potentially identify patients with premalignant and malignant lesions that do not meet the criteria for high clinical risk based on skilled dental examination. Cancer Prev Res; 3(9); 1093–103. ©2010 AACR.


Clinical Cancer Research | 2011

Integrated, Genome-Wide Screening for Hypomethylated Oncogenes in Salivary Gland Adenoid Cystic Carcinoma

Chunbo Shao; Wenyue Sun; Marietta Tan; Chad A. Glazer; Sheetal Bhan; Xiaoli Zhong; Carole Fakhry; Rajni Sharma; William H. Westra; Mohammad O. Hoque; Christopher A. Moskaluk; David Sidransky; Joseph A. Califano; Patrick K. Ha

Purpose: Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy that is poorly understood. To look for relevant oncogene candidates under the control of promoter methylation, an integrated, genome-wide screen was conducted. Experimental Design: Global demethylation of normal salivary gland cell strains using 5-aza-2′-deoxycytidine (5-aza-dC) and trichostatin A (TSA), followed by expression array analysis was conducted. ACC-specific expression profiling was generated using expression microarray analysis of primary ACC and normal samples. Next, the two profiles were integrated to identify a subset of genes for further validation of promoter demethylation in ACC versus normal. Finally, promising candidates were further validated for mRNA, protein, and promoter methylation levels in larger ACC cohorts. Functional validation was then conducted in cancer cell lines. Results: We found 159 genes that were significantly re-expressed after 5-aza-dC/TSA treatment and overexpressed in ACC. After initial validation, eight candidates showed hypomethylation in ACC: AQP1, CECR1, C1QR1, CTAG2, P53AIP1, TDRD12, BEX1, and DYNLT3. Aquaporin 1 (AQP1) showed the most significant hypomethylation and was further validated. AQP1 hypomethylation in ACC was confirmed with two independent cohorts. Of note, there was significant overexpression of AQP1 in both mRNA and protein in the paraffin-embedded ACC cohort. Furthermore, AQP1 was upregulated in 5-aza-dC/TSA–treated SACC83. Finally, AQP1 promoted cell proliferation and colony formation in SACC83. Conclusions: Our integrated, genome-wide screening method proved to be an effective strategy for detecting novel oncogenes in ACC. AQP1 is a promising oncogene candidate for ACC and is transcriptionally regulated by promoter hypomethylation. Clin Cancer Res; 17(13); 4320–30. ©2011 AACR.


Clinical Cancer Research | 2011

BORIS Binding to the Promoters of Cancer Testis Antigens, MAGEA2, MAGEA3, and MAGEA4, Is Associated with Their Transcriptional Activation in Lung Cancer

Sheetal Bhan; Sandeep S. Negi; Chunbo Shao; Chad A. Glazer; Alice Chuang; Daria A. Gaykalova; Wenyue Sun; David Sidransky; Patrick K. Ha; Joseph A. Califano

Purpose: Aim of this study was to determine whether BORIS (Brother of the Regulator of Imprinted Sites) is a regulator of MAGEA2, MAGEA3, and MAGEA4 genes in lung cancer. Experimental Design: Changes in expression of MAGEA genes upon BORIS induction/knockdown were studied. Recruitment of BORIS and changes in histone modifications at their promoters upon BORIS induction were analyzed. Luciferase assays were used to study their activation by BORIS. Changes in methylation at these promoters upon BORIS induction were evaluated. Results: Alteration of BORIS expression by induction/knockdown directly correlated with expression of MAGEA genes. BORIS was enriched at their promoters in H1299 cells, which show high expression of these cancer testis antigens (CTA), compared with normal human bronchial epithelial (NHBE) cells which show low expression of the target CTAs. BORIS induction in A549 cells resulted in increased amounts of BORIS and activating histone modifications at their promoters along with a corresponding increase in their expression. Similarly, BORIS binding at these promoters in H1299 correlates with enrichment of activating modifications, whereas absence of BORIS binding in NHBE is associated with enrichment of repressive marks. BORIS induction of MAGEA3 was associated with promoter demethylation, but no methylation changes were noted with activation of MAGEA2 and MAGEA4. Conclusions: These data suggest that BORIS positively regulates these CTAs by binding and inducing a shift to a more open chromatin conformation with promoter demethylation for MAGEA3 or independent of promoter demethylation in case of MAGEA2 and MAGEA4 and may be a key effector involved in their derepression in lung cancer. Clin Cancer Res; 17(13); 4267–76. ©2011 AACR.

Collaboration


Dive into the Chad A. Glazer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheetal Bhan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Patrick K. Ha

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenyue Sun

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chunbo Shao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ian M. Smith

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

David Sidransky

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Chuang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge