Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenyue Sun is active.

Publication


Featured researches published by Wenyue Sun.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck.

Shaoyu Zhou; Sushant Kachhap; Wenyue Sun; Guojun Wu; Alice Chuang; Luana Poeta; Lawson Grumbine; Suhail K. Mithani; Aditi Chatterjee; Wayne M. Koch; William H. Westra; Anirban Maitra; Chad A. Glazer; Michael A. Carducci; David Sidransky; Thomas McFate; Ajay Verma; Joseph A. Califano

Mitochondrial genomic mutations are found in a variety of human cancers; however, the frequency of mitochondrial DNA (mtDNA) mutations in coding regions remains poorly defined, and the functional effects of mitochondrial mutations found in primary human cancers are not well described. Using MitoChip, we sequenced the whole mitochondrial genome in 83 head and neck squamous cell carcinomas. Forty-one of 83 (49%) tumors contained mtDNA mutations. Mutations occurred within noncoding (D-loop) and coding regions. A nonrandom distribution of mutations was found throughout the mitochondrial enzyme complex components. Sequencing of margins with dysplasia demonstrated an identical nonconservative mitochondrial mutation (A76T in ND4L) as the tumor, suggesting a role of mtDNA mutation in tumor progression. Analysis of p53 status showed that mtDNA mutations correlated positively with p53 mutations (P < 0.002). To characterize biological function of the mtDNA mutations, we cloned NADH dehydrogenase subunit 2 (ND2) mutants based on primary tumor mutations. Expression of the nuclear-transcribed, mitochondrial-targeted ND2 mutants resulted in increased anchorage-dependent and -independent growth, which was accompanied by increased reactive oxygen species production and an aerobic glycolytic metabolic phenotype with hypoxia-inducible factor (HIF)-1α induction that is reversible by ascorbate. Cancer-specific mitochondrial mutations may contribute to development of a malignant phenotype by direct genotoxic effects from increased reactive oxygen species production as well as induction of aerobic glycolysis and growth promotion.


Cancer Research | 2014

Activation of the NOTCH pathway in Head and Neck Cancer

Wenyue Sun; Daria A. Gaykalova; Michael F. Ochs; Elizabeth Mambo; Demetri Arnaoutakis; Yan Liu; Myriam Loyo; Nishant Agrawal; Jason Howard; Ryan Li; Sun Ahn; Elana Fertig; David Sidransky; Jeffery Houghton; Kalyan Buddavarapu; Tiffany Sanford; Ashish Choudhary; Will Darden; Alex Adai; Gary J. Latham; Justin A. Bishop; Rajni Sharma; William H. Westra; Patrick T. Hennessey; Christine H. Chung; Joseph A. Califano

NOTCH1 mutations have been reported to occur in 10% to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation, and mutation analyses. Copy number increases were identified in NOTCH pathway genes, including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4 of the 37 tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptor mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently.


PLOS ONE | 2009

Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer

Ian M. Smith; Chad A. Glazer; Suhail K. Mithani; Michael F. Ochs; Wenyue Sun; Sheetal Bhan; Alexander A. Vostrov; Ziedulla Abdullaev; Victor Lobanenkov; Andrew Elisha Gray; Chunyan Liu; Steven S. Chang; Kimberly L. Ostrow; William H. Westra; Shahnaz Begum; Mousumi Dhara; Joseph A. Califano

Background Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.


Clinical Cancer Research | 2010

TKTL1 Is Activated by Promoter Hypomethylation and Contributes to Head and Neck Squamous Cell Carcinoma Carcinogenesis through Increased Aerobic Glycolysis and HIF1α Stabilization

Wenyue Sun; Yan Liu; Chad A. Glazer; Chunbo Shao; Sheetal Bhan; Semra Demokan; Ming Zhao; Michelle A. Rudek; Patrick K. Ha; Joseph A. Califano

Purpose: This study aims to investigate the role of the aberrant expression of Transkelolase-like 1 (TKTL1) in head and neck squamous cell carcinoma (HNSCC) tumorigenesis and to characterize TKTL1 contribution to HNSCC tumorigenesis through aerobic glycolysis and HIF1α stabilization. Experimental Design: TKTL1 promoter hypomethylation and mRNA/protein aberrant expression were studied in human HNSCC tumor samples and normal mucosas. Oncogenic functions of TKTL1 were examined in HNSCC cell line panels and tumor xenograft models with TKTL1 expression construct. The metabolite levels of fructose-6-phosphate, glyceraldehydes-3-phosphate, pyruvate, lactate, and the levels of HIF1α protein and its downsteam glycolytic targets were compared between the TKTL1-expressing and vehicle-expressing HNSCC cells. Meanwhile, the effects of HIF1α/glycolytic inhibitors were evaluated on the TKTL1 transfectants. Results: TKTL1 exhibits high frequency of promoter hypomethylation in HNSCC tumors compared with the normal mucosas, correlating with its overexpression in HNSCC. Overexpression of TKTL1 in HNSCC cells promoted cellular proliferation and enhanced tumor growth in vitro and in vivo. Overexpression of TKTL1 increased the production of fructose-6-phosphate and glyceraldehyde-3-phosphate, in turn elevating the production of pyruvate and lactate, resulting in the normoxic stabilization of the malignancy-promoting transcription factor HIF1α and the upregulation of downstream glycolytic enzymes. Notably, the reduction of TKTL1 expression decreased HIF1α accumulation and inhibition with HIF1α and/or the glycolysis inhibitor could abrogate the growth effects mediated by TKTL1 overexpression. Conclusion: TKTL1 is a novel candidate oncogene that is epigenetically activated by aberrant hypomethlation and contributes to a malignant phenotype through altered glycolytic metabolism and HIF1α accumulation. Clin Cancer Res; 16(3); 857–66


Clinical Cancer Research | 2009

Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma.

Wenyue Sun; Shaoyu Zhou; Steven S. Chang; Thomas McFate; Ajay Verma; Joseph A. Califano

Purpose: Mitochondrial mutations have been identified in head and neck squamous cell carcinoma (HNSCC), but the pathways by which phenotypic effects of these mutations are exerted remain unclear. Previously, we found that mitochondrial ND2 mutations in primary HNSCC increased reactive oxygen species (ROS) and conferred an aerobic, glycolytic phenotype with HIF1α accumulation and increased cell growth. The purpose of the present study was to examine the pathways relating these alterations. Experimental Design: Mitochondrial mutant and wild-type ND2 constructs were transfected into oral keratinocyte immortal cell line OKF6 and head and neck cancer cell line JHU-O19 and established transfectants. The protein levels of HIF1α, pyruvate dehydrogenease (PDH), phosphorylated PDH, and pyruvate dehydrogenease kinase 2 (PDK2), together with ROS generation, were compared between the mutant and the wild type. Meanwhile, the effects of small molecule inhibitors targeting PDK2 and mitochondria-targeted catalase were evaluated on the ND2 mutant transfectants. Results: We determined that ND2 mutant down-regulated PDH expression via up-regulated PDK2, with an increase in phosphorylated PDH. Inhibition of PDK2 with dichloroacetate decreased HIF1α accumulation and reduced cell growth. Extracellular treatment with hydrogen peroxide, a ROS mimic, increased PDK2 expression and HIF1α expression, and introduction of mitochondria-targeted catalase decreased mitochondrial mutation-mediated PDK2 and HIF1α expression and suppressed cell growth. Conclusions: Our findings suggest that mitochondrial ND2 mutation contributes to HIF1α accumulation via increased ROS production, up-regulation of PDK2, attenuating PDH activity, thereby increasing pyruvate, resulting in HIF1α stabilization. This may provide insight into a potential mechanism, by which mitochondrial mutations contribute to HNSCC development.


PLOS ONE | 2009

Integrative Discovery of Epigenetically Derepressed Cancer Testis Antigens in NSCLC

Chad A. Glazer; Ian M. Smith; Michael F. Ochs; Shahnaz Begum; William H. Westra; Steven S. Chang; Wenyue Sun; Sheetal Bhan; Zubair Khan; Steven A. Ahrendt; Joseph A. Califano

Background Cancer/testis antigens (CTAs) were first discovered as immunogenic targets normally expressed in germline cells, but differentially expressed in a variety of human cancers. In this study, we used an integrative epigenetic screening approach to identify coordinately expressed genes in human non-small cell lung cancer (NSCLC) whose transcription is driven by promoter demethylation. Methodology/Principal Findings Our screening approach found 290 significant genes from the over 47,000 transcripts incorporated in the Affymetrix Human Genome U133 Plus 2.0 expression array. Of the top 55 candidates, 10 showed both differential overexpression and promoter region hypomethylation in NSCLC. Surprisingly, 6 of the 10 genes discovered by this approach were CTAs. Using a separate cohort of primary tumor and normal tissue, we validated NSCLC promoter hypomethylation and increased expression by quantitative RT-PCR for all 10 genes. We noted significant, coordinated coexpression of multiple target genes, as well as coordinated promoter demethylation, in a large set of individual tumors that was associated with the SCC subtype of NSCLC. In addition, we identified 2 novel target genes that exhibited growth-promoting effects in multiple cell lines. Conclusions/Significance Coordinated promoter demethylation in NSCLC is associated with aberrant expression of CTAs and potential, novel candidate protooncogenes that can be identified using integrative discovery techniques. These findings have significant implications for discovery of novel CTAs and CT antigen directed immunotherapy.


Clinical Cancer Research | 2011

Integrated, Genome-Wide Screening for Hypomethylated Oncogenes in Salivary Gland Adenoid Cystic Carcinoma

Chunbo Shao; Wenyue Sun; Marietta Tan; Chad A. Glazer; Sheetal Bhan; Xiaoli Zhong; Carole Fakhry; Rajni Sharma; William H. Westra; Mohammad O. Hoque; Christopher A. Moskaluk; David Sidransky; Joseph A. Califano; Patrick K. Ha

Purpose: Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy that is poorly understood. To look for relevant oncogene candidates under the control of promoter methylation, an integrated, genome-wide screen was conducted. Experimental Design: Global demethylation of normal salivary gland cell strains using 5-aza-2′-deoxycytidine (5-aza-dC) and trichostatin A (TSA), followed by expression array analysis was conducted. ACC-specific expression profiling was generated using expression microarray analysis of primary ACC and normal samples. Next, the two profiles were integrated to identify a subset of genes for further validation of promoter demethylation in ACC versus normal. Finally, promising candidates were further validated for mRNA, protein, and promoter methylation levels in larger ACC cohorts. Functional validation was then conducted in cancer cell lines. Results: We found 159 genes that were significantly re-expressed after 5-aza-dC/TSA treatment and overexpressed in ACC. After initial validation, eight candidates showed hypomethylation in ACC: AQP1, CECR1, C1QR1, CTAG2, P53AIP1, TDRD12, BEX1, and DYNLT3. Aquaporin 1 (AQP1) showed the most significant hypomethylation and was further validated. AQP1 hypomethylation in ACC was confirmed with two independent cohorts. Of note, there was significant overexpression of AQP1 in both mRNA and protein in the paraffin-embedded ACC cohort. Furthermore, AQP1 was upregulated in 5-aza-dC/TSA–treated SACC83. Finally, AQP1 promoted cell proliferation and colony formation in SACC83. Conclusions: Our integrated, genome-wide screening method proved to be an effective strategy for detecting novel oncogenes in ACC. AQP1 is a promising oncogene candidate for ACC and is transcriptionally regulated by promoter hypomethylation. Clin Cancer Res; 17(13); 4320–30. ©2011 AACR.


PLOS ONE | 2014

Novel insight into mutational landscape of head and neck squamous cell carcinoma

Daria A. Gaykalova; Elizabeth Mambo; Ashish Choudhary; Jeffery Houghton; Kalyan Buddavarapu; Tiffany Sanford; Will Darden; Alex Adai; Andrew Hadd; Gary J. Latham; Ludmila Danilova; Justin A. Bishop; Ryan J. Li; William H. Westra; Patrick T. Hennessey; Wayne M. Koch; Michael F. Ochs; Joseph A. Califano; Wenyue Sun

Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection.


Clinical Cancer Research | 2012

Detection of TIMP3 promoter hypermethylation in salivary rinse as an independent predictor of local recurrence-free survival in head and neck cancer

Wenyue Sun; David Zaboli; Hao Wang; Yan Liu; Demetri Arnaoutakis; Tanbir Khan; Zubair Khan; Wayne M. Koch; Joseph A. Califano

Purpose: To validate a panel of methylation-based salivary rinse biomarkers (P16, CCNA1, DCC, TIMP3, MGMT, DAPK, and MINT31) previously shown to be independently associated with poor overall survival and local recurrence in a larger, separate cohort of patients with head and neck squamous cell carcinoma (HNSCC). Experimental Design: One hundred ninety-seven patients were included. All pretreatment saliva DNA samples were evaluated for the methylation status of the gene promoters by quantitative methylation-specific PCR. The main outcome measures were overall survival, local recurrence-free survival, and disease-free survival. Results: In univariate analyses, the detection of hypermethylation of CCNA1, MGMT, and MINT31 was significantly associated with poor overall survival; the detection of hypermethylation of TIMP3 was significantly associated with local recurrence-free survival; and the detection of hypermethylation of MINT31 was significantly associated with poor disease-free survival. In multivariate analyses, detection of hypermethylation at any single marker was not predictive of overall survival in patients with HNSCC; detection of hypermethylation of TIMP3 in salivary rinse had an independent, significant association with local recurrence-free survival (HR = 2.51; 95% CI: 1.10–5.68); and none of the studied markers was significantly associated with disease-free survival. Conclusion: The detection of promoter hypermethylation of the seven genes in salivary rinse as an independent prognostic indicator of overall survival in patients with HNSCC was not validated. Detection of promoter hypermethylation of TIMP3 in pretreatment salivary rinse is independently associated with local recurrence-free survival in patients with HNSCC and may be a valuable salivary rinse biomarker for HNSCC recurrence. Clin Cancer Res; 18(4); 1082–91. ©2012 AACR.


Clinical Cancer Research | 2011

BORIS Binding to the Promoters of Cancer Testis Antigens, MAGEA2, MAGEA3, and MAGEA4, Is Associated with Their Transcriptional Activation in Lung Cancer

Sheetal Bhan; Sandeep S. Negi; Chunbo Shao; Chad A. Glazer; Alice Chuang; Daria A. Gaykalova; Wenyue Sun; David Sidransky; Patrick K. Ha; Joseph A. Califano

Purpose: Aim of this study was to determine whether BORIS (Brother of the Regulator of Imprinted Sites) is a regulator of MAGEA2, MAGEA3, and MAGEA4 genes in lung cancer. Experimental Design: Changes in expression of MAGEA genes upon BORIS induction/knockdown were studied. Recruitment of BORIS and changes in histone modifications at their promoters upon BORIS induction were analyzed. Luciferase assays were used to study their activation by BORIS. Changes in methylation at these promoters upon BORIS induction were evaluated. Results: Alteration of BORIS expression by induction/knockdown directly correlated with expression of MAGEA genes. BORIS was enriched at their promoters in H1299 cells, which show high expression of these cancer testis antigens (CTA), compared with normal human bronchial epithelial (NHBE) cells which show low expression of the target CTAs. BORIS induction in A549 cells resulted in increased amounts of BORIS and activating histone modifications at their promoters along with a corresponding increase in their expression. Similarly, BORIS binding at these promoters in H1299 correlates with enrichment of activating modifications, whereas absence of BORIS binding in NHBE is associated with enrichment of repressive marks. BORIS induction of MAGEA3 was associated with promoter demethylation, but no methylation changes were noted with activation of MAGEA2 and MAGEA4. Conclusions: These data suggest that BORIS positively regulates these CTAs by binding and inducing a shift to a more open chromatin conformation with promoter demethylation for MAGEA3 or independent of promoter demethylation in case of MAGEA2 and MAGEA4 and may be a key effector involved in their derepression in lung cancer. Clin Cancer Res; 17(13); 4267–76. ©2011 AACR.

Collaboration


Dive into the Wenyue Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad A. Glazer

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheetal Bhan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chunbo Shao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Yan Liu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

David Sidransky

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Patrick K. Ha

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge