Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad E. Schroeder is active.

Publication


Featured researches published by Chad E. Schroeder.


Journal of Biological Chemistry | 2013

Characterization of a Cdc42 Protein Inhibitor and Its Use as a Molecular Probe

Lin Hong; S. Ray Kenney; Genevieve K Phillips; Denise S. Simpson; Chad E. Schroeder; Julica Nöth; Elsa Romero; Scarlett Swanson; Anna Waller; J. Jacob Strouse; Mark B. Carter; Alexandre Chigaev; Oleg Ursu; Tudor I. Oprea; Brian Hjelle; Jennifer E. Golden; Jeffrey Aubé; Laurie G. Hudson; Tione Buranda; Larry A. Sklar; Angela Wandinger-Ness

Background: By integrating extracellular signals with actin cytoskeletal changes, Cdc42 plays important roles in cell physiology and has been implicated in human diseases. Results: A small molecule was found to selectively inhibit Cdc42 in biochemical and cellular assays. Conclusion: The identified compound is a highly Cdc42-selective inhibitor. Significance: The described first-in-class Cdc42 GTPase-selective inhibitor will have applications in drug discovery and fundamental research. Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.


ACS Chemical Biology | 2012

A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition.

Jacob O. Agola; Lin Hong; Zurab Surviladze; Oleg Ursu; Anna Waller; J. Jacob Strouse; Denise S. Simpson; Chad E. Schroeder; Tudor I. Oprea; Jennifer E. Golden; Jeffrey Aubé; Tione Buranda; Larry A. Sklar; Angela Wandinger-Ness

Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.


Antimicrobial Agents and Chemotherapy | 2013

Interrogating a Hexokinase-Selected Small-Molecule Library for Inhibitors of Plasmodium falciparum Hexokinase

Michael T. Harris; Dawn M. Walker; Mark E. Drew; William G. Mitchell; Kevin Dao; Chad E. Schroeder; Daniel P. Flaherty; Warren S. Weiner; Jennifer E. Golden; James C. Morris

ABSTRACT Parasites in the genus Plasmodium cause disease throughout the tropic and subtropical regions of the world. P. falciparum, one of the deadliest species of the parasite, relies on glycolysis for the generation of ATP while it inhabits the mammalian red blood cell. The first step in glycolysis is catalyzed by hexokinase (HK). While the 55.3-kDa P. falciparum HK (PfHK) shares several biochemical characteristics with mammalian HKs, including being inhibited by its products, it has limited amino acid identity (∼26%) to the human HKs, suggesting that enzyme-specific therapeutics could be generated. To that end, interrogation of a selected small-molecule library of HK inhibitors has identified a class of PfHK inhibitors, isobenzothiazolinones, some of which have 50% inhibitory concentrations (IC50s) of <1 μM. Inhibition was reversible by dilution but not by treatment with a reducing agent, suggesting that the basis for enzyme inactivation was not covalent association with the inhibitor. Lastly, six of these compounds and the related molecule ebselen inhibited P. falciparum growth in vitro (50% effective concentration [EC50] of ≥0.6 and <6.8 μM). These findings suggest that the chemotypes identified here could represent leads for future development of therapeutics against P. falciparum.


PLOS Pathogens | 2014

Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

Dong-Hoon Chung; Colleen B. Jonsson; Nichole A. Tower; Yong Kyu Chu; Ergin Sahin; Jennifer E. Golden; James W. Noah; Chad E. Schroeder; Julie Sotsky; Melinda Sosa; Daniel E. Cramer; Sara McKellip; Lynn Rasmussen; E. Lucile White; Connie S. Schmaljohn; Justin G. Julander; Jeffrey M. Smith; Claire Marie Filone; John H. Connor; Yasuteru Sakurai; Robert A. Davey

Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.


ACS Chemical Biology | 2014

Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

Sourav Mukherjee; Warren S. Weiner; Chad E. Schroeder; Denise S. Simpson; Alicia M. Hanson; Noreena L. Sweeney; Rachel K. Marvin; Jean Ndjomou; Rajesh Kolli; Dragan Isailovic; Frank J. Schoenen; David N. Frick

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.


Journal of Biomolecular Screening | 2013

A Selective ATP-Binding Cassette Subfamily G Member 2 Efflux Inhibitor Revealed via High-Throughput Flow Cytometry

J. Jacob Strouse; Irena Ivnitski-Steele; Hadya M. Khawaja; Dominique Perez; Jerec Ricci; Tuanli Yao; Warren S. Weiner; Chad E. Schroeder; Denise S. Simpson; Brooks E. Maki; Kelin Li; Jennifer E. Golden; Terry D. Foutz; Anna Waller; Annette M. Evangelisti; Susan M. Young; Stephanie E. Chavez; Matthew Garcia; Oleg Ursu; Cristian G. Bologa; Mark B. Carter; Virginia M. Salas; Kristine Gouveia; George P. Tegos; Tudor I. Oprea; Bruce S. Edwards; Jeffrey Aubé; Richard S. Larson; Larry A. Sklar

Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)–driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented.


Antimicrobial Agents and Chemotherapy | 2016

Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State

Dong-Hoon Chung; Jennifer E. Golden; Robert S. Adcock; Chad E. Schroeder; Yong Kyu Chu; Julie Sotsky; Daniel E. Cramer; Paula M. Chilton; Chisu Song; Manu Anantpadma; Robert A. Davey; Aminul Islam Prodhan; Xinmin Yin; Xiang Zhang

ABSTRACT Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons.


Journal of Medicinal Chemistry | 2014

Optimization of potent and selective quinazolinediones: inhibitors of respiratory syncytial virus that block RNA-dependent RNA-polymerase complex activity.

Daljit S. Matharu; Daniel P. Flaherty; Denise S. Simpson; Chad E. Schroeder; Dong-Hoon Chung; Dan Yan; James W. Noah; Colleen B. Jonsson; E. Lucile White; Jeffrey Aubé; Richard K. Plemper; William Severson; Jennifer E. Golden

A quinazolinedione-derived screening hit 2 was discovered with cellular antiviral activity against respiratory syncytial virus (CPE EC50 = 2.1 μM), moderate efficacy in reducing viral progeny (4.2 log at 10 μM), and marginal cytotoxic liability (selectivity index, SI ∼ 24). Scaffold optimization delivered analogs with improved potency and selectivity profiles. Most notable were compounds 15 and 19 (EC50 = 300–500 nM, CC50 > 50 μM, SI > 100), which significantly reduced viral titer (>400,000-fold), and several analogs were shown to block the activity of the RNA-dependent RNA-polymerase complex of RSV.


Journal of Medicinal Chemistry | 2014

Development of (E)-2-((1,4-dimethylpiperazin-2-ylidene)amino)-5-nitro-N-phenylbenzamide, ML336: Novel 2-amidinophenylbenzamides as potent inhibitors of venezuelan equine encephalitis virus.

Chad E. Schroeder; Tuanli Yao; Julie Sotsky; Robert A. Smith; Sudeshna Roy; Yong Kyu Chu; Haixun Guo; Nichole A. Tower; James W. Noah; Sara McKellip; Melinda Sosa; Lynn Rasmussen; Layton H. Smith; E. Lucile White; Jeffrey Aubé; Colleen B. Jonsson; Dong-Hoon Chung; Jennifer E. Golden

Venezuelan equine encephalitis virus (VEEV) is an emerging pathogenic alphavirus that can cause significant disease in humans. Given the absence of therapeutic options available and the significance of VEEV as a weaponized agent, an optimization effort was initiated around a quinazolinone screening hit 1 with promising cellular antiviral activity (EC50 = 0.8 μM), limited cytotoxic liability (CC50 > 50 μM), and modest in vitro efficacy in reducing viral progeny (63-fold at 5 μM). Scaffold optimization revealed a novel rearrangement affording amidines, specifically compound 45, which was found to potently inhibit several VEEV strains in the low nanomolar range without cytotoxicity (EC50 = 0.02–0.04 μM, CC50 > 50 μM) while limiting in vitro viral replication (EC90 = 0.17 μM). Brain exposure was observed in mice with 45. Significant protection was observed in VEEV-infected mice at 5 mg kg–1 day–1 and viral replication appeared to be inhibited through interference of viral nonstructural proteins.


Biochemical Pharmacology | 2016

Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C.

Debasish Chattopadhyay; M.R Swingle; E.A Salter; E Wood; B D'Arcy; C Zivanov; Kevin Abney; A Musiyenko; Scott F. Rusin; Arminja N. Kettenbach; L Yet; Chad E. Schroeder; Jennifer E. Golden; Wade H. Dunham; Anne-Claude Gingras; Surajit Banerjee; D Forbes; A Wierzbicki; Richard E. Honkanen

Cantharidin is a natural toxin and an active constituent in a traditional Chinese medicine used to treat tumors. Cantharidin acts as a semi-selective inhibitor of PPP-family ser/thr protein phosphatases. Despite sharing a common catalytic mechanism and marked structural similarity with PP1C, PP2AC and PP5C, human PP4C was found to be insensitive to the inhibitory activity of cantharidin. To explore the molecular basis for this selectivity, we synthesized and tested novel C5/C6-derivatives designed from quantum-based modeling of the interactions revealed in the co-crystal structures of PP5C in complex with cantharidin. Structure-activity relationship studies and analysis of high-resolution (1.25Å) PP5C-inhibitor co-crystal structures reveal close contacts between the inhibitor bridgehead oxygen and both a catalytic metal ion and a non-catalytic phenylalanine residue, the latter of which is substituted by tryptophan in PP4C. Quantum chemistry calculations predicted that steric clashes with the bulkier tryptophan side chain in PP4C would force all cantharidin-based inhibitors into an unfavorable binding mode, disrupting the strong coordination of active site metal ions observed in the PP5C co-crystal structures, thereby rendering PP4C insensitive to the inhibitors. This prediction was confirmed by inhibition studies employing native human PP4C. Mutation of PP5C (F446W) and PP1C (F257W), to mimic the PP4C active site, resulted in markedly suppressed sensitivity to cantharidin. These observations provide insight into the structural basis for the natural selectivity of cantharidin and provide an avenue for PP4C deselection. The novel crystal structures also provide insight into interactions that provide increased selectivity of the C5/C6 modifications for PP5C versus other PPP-family phosphatases.

Collaboration


Dive into the Chad E. Schroeder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry A. Sklar

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Waller

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Oleg Ursu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge