Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad J. Miller is active.

Publication


Featured researches published by Chad J. Miller.


Molecular Cell | 2015

Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates

Daniel F. Egan; Matthew G.H. Chun; Mitchell Vamos; Haixia Zou; Juan Rong; Chad J. Miller; Hua Jane Lou; Dhanya Raveendra-Panickar; Chih-Cheng Yang; Douglas J. Sheffler; Peter Teriete; John M. Asara; Benjamin E. Turk; Nicholas D. P. Cosford; Reuben J. Shaw

Many tumors become addicted to autophagy for survival, suggesting inhibition of autophagy as a potential broadly applicable cancer therapy. ULK1/Atg1 is the only serine/threonine kinase in the core autophagy pathway and thus represents an excellent drug target. Despite recent advances in the understanding of ULK1 activation by nutrient deprivation, how ULK1 promotes autophagy remains poorly understood. Here, we screened degenerate peptide libraries to deduce the optimal ULK1 substrate motif and discovered 15 phosphorylation sites in core autophagy proteins that were verified as in vivo ULK1 targets. We utilized these ULK1 substrates to perform a cell-based screen to identify and characterize a potent ULK1 small molecule inhibitor. The compound SBI-0206965 is a highly selective ULK1 kinase inhibitor in vitro and suppressed ULK1-mediated phosphorylation events in cells, regulating autophagy and cell survival. SBI-0206965 greatly synergized with mechanistic target of rapamycin (mTOR) inhibitors to kill tumor cells, providing a strong rationale for their combined use in the clinic.


Cell | 2015

Kinome-wide decoding of network-attacking mutations rewiring cancer signaling.

Pau Creixell; Erwin M. Schoof; Craig D. Simpson; James Longden; Chad J. Miller; Hua Jane Lou; Lara Perryman; Thomas R. Cox; Nevena Zivanovic; Antonio Palmeri; Agata Wesolowska-Andersen; Manuela Helmer-Citterich; Jesper Ferkinghoff-Borg; Hiroaki Itamochi; Bernd Bodenmiller; Janine T. Erler; Benjamin E. Turk; Rune Linding

Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks.


Cell | 2015

Unmasking Determinants of Specificity in the Human Kinome

Pau Creixell; Antonio Palmeri; Chad J. Miller; Hua Jane Lou; Cristina Costa Santini; Morten Nielsen; Benjamin E. Turk; Rune Linding

Summary Protein kinases control cellular responses to environmental cues by swift and accurate signal processing. Breakdowns in this high-fidelity capability are a driving force in cancer and other diseases. Thus, our limited understanding of which amino acids in the kinase domain encode substrate specificity, the so-called determinants of specificity (DoS), constitutes a major obstacle in cancer signaling. Here, we systematically discover several DoS and experimentally validate three of them, named the αC1, αC3, and APE-7 residues. We demonstrate that DoS form sparse networks of non-conserved residues spanning distant regions. Our results reveal a likely role for inter-residue allostery in specificity and an evolutionary decoupling of kinase activity and specificity, which appear loaded on independent groups of residues. Finally, we uncover similar properties driving SH2 domain specificity and demonstrate how the identification of DoS can be utilized to elucidate a greater understanding of the role of signaling networks in cancer (Creixell et al., 2015 [this issue of Cell]).


eLife | 2014

Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity

Conor J Howard; Victor Hanson-Smith; Kristopher J Kennedy; Chad J. Miller; Hua Jane Lou; Alexander D. Johnson; Benjamin E. Turk; Liam J. Holt

Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs) require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs, and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases. DOI: http://dx.doi.org/10.7554/eLife.04126.001


Methods of Molecular Biology | 2016

Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries

Chad J. Miller; Benjamin E. Turk

Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.


Trends in Biochemical Sciences | 2018

Homing in: Mechanisms of Substrate Targeting by Protein Kinases

Chad J. Miller; Benjamin E. Turk

Protein phosphorylation is the most common reversible post-translational modification in eukaryotes. Humans have over 500 protein kinases, of which more than a dozen are established targets for anticancer drugs. All kinases share a structurally similar catalytic domain, yet each one is uniquely positioned within signaling networks controlling essentially all aspects of cell behavior. Kinases are distinguished from one another based on their modes of regulation and their substrate repertoires. Coupling specific inputs to the proper signaling outputs requires that kinases phosphorylate a limited number of sites to the exclusion of hundreds of thousands of off-target phosphorylation sites. Here, we review recent progress in understanding mechanisms of kinase substrate specificity and how they function to shape cellular signaling networks.


ACS Chemical Biology | 2017

Rational Redesign of a Functional Protein Kinase-Substrate Interaction

Catherine Chen; Wutigri Nimlamool; Chad J. Miller; Hua Jane Lou; Benjamin E. Turk

Eukaryotic protein kinases typically phosphorylate substrates in the context of specific sequence motifs, contributing to specificity essential for accurate signal transmission. Protein kinases recognize their target sequences through complementary interactions within the active site cleft. As a step toward the construction of orthogonal kinase signaling systems, we have re-engineered the protein kinase Pim1 to alter its phosphorylation consensus sequence. Residues in the Pim1 catalytic domain interacting directly with a critical arginine residue in the substrate were substituted to produce a kinase mutant that instead accommodates a hydrophobic residue. We then introduced a compensating mutation into a Pim1 substrate, the pro-apoptotic protein BAD, to reconstitute phosphorylation both in vitro and in living cells. Coexpression of the redesigned kinase with its substrate in cells protected them from apoptosis. Such orthogonal kinase-substrate pairs provide tools to probe the functional consequences of specific phosphorylation events in living cells and to design synthetic signaling pathways.


Biochemistry | 2018

Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library

Karl W. Barber; Chad J. Miller; Jay W. Jun; Hua Jane Lou; Benjamin E. Turk; Jesse Rinehart

The human proteome encodes >500 protein kinases and hundreds of thousands of potential phosphorylation sites. However, the identification of kinase-substrate pairs remains an active area of research because the relationships between individual kinases and these phosphorylation sites remain largely unknown. Many techniques have been established to discover kinase substrates but are often technically challenging to perform. Moreover, these methods frequently rely on substrate reagent pools that do not reflect human protein sequences or are biased by human cell line protein expression profiles. Here, we describe a new approach called SERIOHL-KILR (serine-oriented human library-kinase library reactions) to profile kinase substrate specificity and to identify candidate substrates for serine kinases. Using a purified library of >100000 serine-oriented human peptides expressed heterologously in Escherichia coli, we perform in vitro kinase reactions to identify phosphorylated human peptide sequences by liquid chromatography and tandem mass spectrometry. We compare our results for protein kinase A to those of a well-established positional scanning peptide library method, certifying that SERIOHL-KILR can identify the same predominant motif elements as traditional techniques. We then interrogate a small panel of cancer-associated PKCβ mutants using our profiling protocol and observe a shift in substrate specificity likely attributable to the loss of key polar contacts between the kinase and its substrates. Overall, we demonstrate that SERIOHL-KILR can rapidly identify candidate kinase substrates that can be directly mapped to human sequences for pathway analysis. Because this technique can be adapted for various kinase studies, we believe that SERIOHL-KILR will have many new victims in the future.


Journal of Biological Chemistry | 2017

Identification of a Substrate-selective Exosite within the Metalloproteinase Anthrax Lethal Factor

Allison B. Goldberg; Eunice Cho; Chad J. Miller; Hua Jane Lou; Benjamin E. Turk

The metalloproteinase anthrax lethal factor (LF) is secreted by Bacillus anthracis to promote disease virulence through disruption of host signaling pathways. LF is a highly specific protease, exclusively cleaving mitogen-activated protein kinase kinases (MKKs) and rodent NLRP1B (NACHT leucine-rich repeat and pyrin domain-containing protein 1B). How LF achieves such restricted substrate specificity is not understood. Previous studies have suggested the existence of an exosite interaction between LF and MKKs that promotes cleavage efficiency and specificity. Through a combination of in silico prediction and site-directed mutagenesis, we have mapped an exosite to a non-catalytic region of LF. Mutations within this site selectively impair proteolysis of full-length MKKs yet have no impact on cleavage of short peptide substrates. Although this region appears important for cleaving all LF protein substrates, we found that mutation of specific residues within the exosite differentially affects MKK and NLRP1B cleavage in vitro and in cultured cells. One residue in particular, Trp-271, is essential for cleavage of MKK3, MKK4, and MKK6 but dispensable for targeting of MEK1, MEK2, and NLRP1B. Analysis of chimeric substrates suggests that this residue interacts with the MKK catalytic domain. We found that LF-W271A blocked ERK phosphorylation and growth in a melanoma cell line, suggesting that it may provide a highly selective inhibitor of MEK1/2 for use as a cancer therapeutic. These findings provide insight into how a bacterial toxin functions to specifically impair host signaling pathways and suggest a general strategy for mapping protease exosite interactions.


Biochemical Pharmacology | 2017

A high throughput assay to identify substrate-selective inhibitors of the ERK protein kinases

Chad J. Miller; Yagmur Muftuoglu; Benjamin E. Turk

ABSTRACT Extracellular signal‐regulated kinases 1 and 2 (ERK1/2) phosphorylate a variety of substrates important for survival and proliferation, and their activity is frequently deregulated in tumors. ERK pathway inhibitors have shown clinical efficacy as anti‐cancer drugs, but most patients eventually relapse due to reactivation of the pathway. One factor limiting the efficacy of current therapeutics is the difficulty in reaching clinically effective inhibition of the ERK pathway in the absence of on‐target toxicities. Here, we describe an assay suitable for high throughput screening to discover substrate selective ERK1/2 inhibitors, which may have a larger therapeutic window than conventional inhibitors. Specifically, we aim to target a substrate‐binding pocket within the ERK1/2 catalytic domain outside of the catalytic cleft. The assay uses an AlphaScreen format to detect phosphorylation of a high‐efficiency substrate harboring an essential docking site motif. Pilot screening established that the assay is suitably robust for high‐throughput screening. Importantly, the assay can be conducted at high ATP concentrations, which we show reduces the discovery of conventional ATP‐competitive inhibitors. These studies provide the basis for high‐throughput screens to discover new classes of non‐conventional ERK1/2 inhibitors.

Collaboration


Dive into the Chad J. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conor J Howard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pau Creixell

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Rune Linding

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Antonio Palmeri

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge