Chai An Mao
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chai An Mao.
Neuron | 2008
Alessandro Sessa; Chai An Mao; Anna-Katerina Hadjantonakis; William H. Klein; Vania Broccoli
T-brain gene-2 (Tbr2) is specifically expressed in the intermediate (basal) progenitor cells (IPCs) of the developing cerebral cortex; however, its function in this biological context has so far been overlooked due to the early lethality of Tbr2 mutant embryos. Conditional ablation of Tbr2 in the developing forebrain resulted in the loss of IPCs and their differentiated progeny in mutant cortex. Intriguingly, early loss of IPCs led to a decrease in cortical surface expansion and thickness with a neuronal reduction observed in all cortical layers. These findings suggest that IPC progeny contribute to the correct morphogenesis of each cortical layer. Our observations were confirmed by tracing Tbr2+ IPC cell fate using Tbr2::GFP transgenic mice. Finally, we demonstrated that misexpression of Tbr2 is sufficient to induce IPC identity in ventricular radial glial cells (RGCs). Together, these findings identify Tbr2 as a critical factor for the specification of IPCs during corticogenesis.
Genes & Development | 2010
Alessandro Sessa; Chai An Mao; Gaia Colasante; Alessandro Nini; William H. Klein; Vania Broccoli
Little is known about how, during its formidable expansion in development and evolution, the cerebral cortex is able to maintain the correct balance between excitatory and inhibitory neurons. In fact, while the former are born within the cortical primordium, the latter originate outward in the ventral pallium. Therefore, it remains to be addressed how these two neuronal populations might coordinate their relative amounts in order to build a functional cortical network. Here, we show that Tbr2-positive cortical intermediate (basal) neuronal progenitors (INPs) dictate the migratory route and control the amount of subpallial GABAergic interneurons in the subventricular zone (SVZ) through a non-cell-autonomous mechanism. In fact, Tbr2 interneuron attractive activity is moderated by Cxcl12 chemokine signaling, whose forced expression in the Tbr2 mutants can rescue, to some extent, SVZ cell migration. We thus propose that INPs are able to control simultaneously the increase of glutamatergic and GABAergic neuronal pools, thereby creating a simple way to intrinsically balance their relative accumulation.
Development | 2007
Chai An Mao; Takae Kiyama; Ping Pan; Yasuhide Furuta; Anna-Katerina Hadjantonakis; William H. Klein
The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2-/- retinas. Moreover, myelin ensheathment in the optic nerves of Eomes-/- embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.
Developmental Genetics | 1996
Chin Kai Chuang; Athula H. Wikramanayake; Chai An Mao; Xiaotao Li; William H. Klein
At the 16-cell stage, the sea urchin embryo is partitioned along the animal-vegetal axis into eight mesomeres, four macromeres, and four micromeres. The micromeres, unlike the other blastomeres, are autonomously specified to produce skeletogenic mesenchymal cells and are also required to induce the vegetal-plate territory. A long-held belief is that micromeres inherit localized maternal determinants that endow them with their cell autonomous behavior and inducing capabilities. Here, we present evidence that an orthodenticle-related protein, SpOtx appears transiently in nuclei of micromeres but not in nuclei of mesomeres and macromeres. At later stages of development, SpOtx was translocated into nuclei of all cells. To address the possibility that SpOtx was retained in the cytoplasm at early developmental stages, we searched for cytoplasmic proteins that interact with SpOtx. A proline-rich region of SpOtx resembling an SH3-binding domain was used to screen an embryo cDNA expression library, and a cDNA clone was isolated and shown to be alpha-actinin. A yeast two-hybrid analysis showed a specific interaction between the proline-rich region of SpOtx and a putative SH3 domain of the sea urchin alpha-actinin. Because micromeres lack an actin-based cytoskeleton, the results suggested that, at the vegetal pole of the 16-cell stage embryo, SpOtx was translocated into micromere nuclei, whereas in other blastomeres SpOtx was actively retained in the cytoplasm by binding to alpha-actinin. The transient appearance of SpOtx in micromere nuclei may be associated with the specification of micromere cell fate.
Genes & Development | 2013
Sonja Nowotschin; Ita Costello; Anna Piliszek; Gloria S. Kwon; Chai An Mao; William H. Klein; Elizabeth J. Robertson; Anna-Katerina Hadjantonakis
Reciprocal inductive interactions between the embryonic and extraembryonic tissues establish the anterior-posterior (AP) axis of the early mouse embryo. The anterior visceral endoderm (AVE) signaling center emerges at the distal tip of the embryo at embryonic day 5.5 and translocates to the prospective anterior side of the embryo. The process of AVE induction and migration are poorly understood. Here we demonstrate that the T-box gene Eomesodermin (Eomes) plays an essential role in AVE recruitment, in part by directly activating the homeobox transcription factor Lhx1. Thus, Eomes function in the visceral endoderm (VE) initiates an instructive transcriptional program controlling AP identity.
Development | 2008
Chai An Mao; Steven W. Wang; Ping Pan; William H. Klein
Retinal progenitor cells (RPCs) express basic helix-loop-helix (bHLH) factors in a strikingly mosaic spatiotemporal pattern, which is thought to contribute to the establishment of individual retinal cell identity. Here, we ask whether this tightly regulated pattern is essential for the orderly differentiation of the early retinal cell types and whether different bHLH genes have distinct functions that are adapted for each RPC. To address these issues, we replaced one bHLH gene with another. Math5 is a bHLH gene that is essential for establishing retinal ganglion cell (RGC) fate. We analyzed the retinas of mice in which Math5 was replaced with Neurod1 or Math3, bHLH genes that are expressed in another RPC and are required to establish amacrine cell fate. In the absence of Math5, Math5Neurod1-KI was able to specify RGCs, activate RGC genes and restore the optic nerve, although not as effectively as Math5. By contrast, Math5Math3-KI was much less effective than Math5Neurod1-KI in replacing Math5. In addition, expression of Neurod1 and Math3 from the Math5Neurod1-KI/Math3-KI allele did not result in enhanced amacrine cell production. These results were unexpected because they indicated that bHLH genes, which are currently thought to have evolved highly specialized functions, are nonetheless able to adjust their functions by interpreting the local positional information that is programmed into the RPC lineages. We conclude that, although Neurod1 and Math3 have evolved specialized functions for establishing amacrine cell fate, they are nevertheless capable of alternative functions when expressed in foreign environments.
Development | 2013
Chai An Mao; Jang Hyeon Cho; Jing Wang; Zhiguang Gao; Ping Pan; Wen Wei Tsai; Laura J. Frishman; William H. Klein
The specification of the seven retinal cell types from a common pool of retina progenitor cells (RPCs) involves complex interactions between the intrinsic program and the environment. The proneural basic helix-loop-helix (bHLH) transcriptional regulators are key components for the intrinsic programming of RPCs and are essential for the formation of the diverse retinal cell types. However, the extent to which an RPC can re-adjust its inherent program and the mechanisms through which the expression of a particular bHLH factor influences RPC fate is unclear. Previously, we have shown that Neurod1 inserted into the Atoh7 locus activates the retinal ganglion cell (RGC) program in Atoh7-expressing RPCs but not in Neurod1-expressing RPCs, suggesting that Atoh7-expressing RPCs are not able to adopt the cell fate determined by Neurod1, but rather are pre-programmed to produce RGCs. Here, we show that Neurod1-expressing RPCs, which are destined to produce amacrine and photoreceptor cells, can be re-programmed into RGCs when Atoh7 is inserted into the Neurod1 locus. These results suggest that Atoh7 acts dominantly to convert a RPC subpopulation not destined for an RGC fate to adopt that fate. Thus, Atoh7-expressing and Neurod1-expressing RPCs are intrinsically different in their behavior. Additionally, ChIP-Seq analysis identified an Atoh7-dependent enhancer within the intronic region of Nrxn3. The enhancer recognized and used Atoh7 in the developing retina to regulate expression of Nrxn3, but could be forced to use Neurod1 when placed in a different regulatory context. The results indicate that Atoh7 and Neurod1 activate distinct sets of genes in vivo, despite their common DNA-binding element.
Vision Research | 2011
Takae Kiyama; Chai An Mao; Jang Hyeon Cho; Xueyao Fu; Ping Pan; Xiuqian Mu; William H. Klein
Retinal progenitor cells (RPCs) are programmed early in development to acquire the competence for specifying the seven retinal cell types. Acquiring competence is a complex spatiotemporal process that is still only vaguely understood. Here, our objective was to more fully understand the mechanisms by which RPCs become competent for specifying a retinal ganglion cell (RGC) fate. RGCs are the first retinal cell type to differentiate and their abnormal development leads to apoptosis and optic nerve degeneration. Previous work demonstrated that the paired domain factor Pax6 and the bHLH factor Atoh7 are required for RPCs to specify RGCs. RGC commitment is marked by the expression of the Pou domain factor Pou4f2 and the Lim domain factor Isl1. We show that three RPC subpopulations can specify RGCs: Atoh7-expressing RPCs, Neurod1-expressing RPCs, and Atoh7-Neurod1-expressing RPCs. All three RPC subpopulations were highly interspersed throughout retinal development, although each subpopulation maintained a distinct temporal pattern. Most, but not all, RPCs from each subpopulation were postmitotic. Atoh7-Neurod1 double knockout mice were generated and double-mutant retinas revealed an unexpected role for Neurod1 in specifying RGC fate. We conclude that RPCs have a complex regulatory gene expression program in which they acquire competence using highly integrated mechanisms.
Developmental Biology | 2011
Chai An Mao; Wen Wei Tsai; Jang Hyeon Cho; Ping Pan; Michelle Craig Barton; William H. Klein
As neuronal progenitors differentiate into neurons, they acquire a unique set of transcription factors. The transcriptional repressor REST prevents progenitors from undergoing differentiation. Notably, REST binding sites are often associated with retinal ganglion cell (RGC) genes whose expression in the retina is positively controlled by Atoh7, a factor essential for RGC formation. The key regulators that enable a retinal progenitor cell (RPC) to commit to an RGC fate have not been identified. We show here that REST suppresses RGC gene expression in RPCs. REST inactivation causes aberrant expression of RGC transcription factors in proliferating RPCs, independent of Atoh7, resulting in increased RGC formation. Strikingly, inactivating REST in Atoh7-null retinas restores transcription factor expression, which partially activates downstream RGC genes but is insufficient to prevent RGC loss. Our results demonstrate an Atoh7-independent program for initial activation of RGC genes and suggest a novel role for REST in preventing premature expression in RPCs.
The Journal of Neuroscience | 2014
Chai An Mao; Hongyan Li; Zhijing Zhang; Takae Kiyama; Satchidananda Panda; Samer Hattar; Christophe Ribelayga; Stephen L. Mills; Steven W. Wang
Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4.