Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaitanya S. Nirodi is active.

Publication


Featured researches published by Chaitanya S. Nirodi.


Clinical Cancer Research | 2007

The Epidermal Growth Factor Receptor: A Role in Repair of Radiation-Induced DNA Damage

David J. Chen; Chaitanya S. Nirodi

The epidermal growth factor receptor (EGFR), which is frequently expressed in tumors of epithelial origin, is an important determinant of tumor responses to ionizing radiation. Elevated EGFR expression and activity frequently correlate with tumor resistance to radiotherapy in patients. EGFR is thought to confer tumor resistance to radiation through the activation of survival and cell proliferation pathways. Recent discoveries have identified a novel radioprotective function of EGFR which involves the radiation-induced nuclear translocation of the receptor and its interactions with the DNA-dependent protein kinase, a key component of the nonhomologous end-joining DNA repair pathway. Targeting the DNA repair function of EGFR may serve as a therapeutic model for sensitizing tumors to radiotherapy in patients.


Cancer Research | 2006

Non–Small Cell Lung Cancers with Kinase Domain Mutations in the Epidermal Growth Factor Receptor Are Sensitive to Ionizing Radiation

Amit K. Das; Mitsuo Sato; Michael D. Story; Michael Peyton; Robert Graves; Stella Redpath; Luc Girard; Adi F. Gazdar; Jerry W. Shay; John D. Minna; Chaitanya S. Nirodi

Non-small cell lung cancers (NSCLCs) bearing mutations in the tyrosine kinase domain (TKD) of the epidermal growth factor receptor (EGFR) often exhibit dramatic sensitivity to the EGFR tyrosine kinase inhibitors gefitinib and erlotinib. Ionizing radiation (IR) is frequently used in the treatment of NSCLC, but little is known how lung tumor-acquired EGFR mutations affect responses to IR. Because this is of great clinical importance, we investigated and found that clonogenic survival of mutant EGFR NSCLCs in response to IR was reduced 500- to 1,000-fold compared with wild-type (WT) EGFR NSCLCs. Exogenous expression of either the L858R point mutant or the DeltaE746-E750 deletion mutant form of EGFR in immortalized human bronchial epithelial cells, p53 WT NSCLC (A549), or p53-null NSCLC (NCI-H1299) resulted in dramatically increased sensitivity to IR. We show that the majority of mutant EGFR NSCLCs, including those that contain the secondary gefitinib resistance T790M mutation, exhibit characteristics consistent with a radiosensitive phenotype, which include delayed DNA repair kinetics, defective IR-induced arrest in DNA synthesis or mitosis, and pronounced increases in apoptosis or micronuclei. Thus, understanding how activating mutations in the TKD domain of EGFR contribute to radiosensitivity should provide new insight into effective treatment of NSCLC with radiotherapy and perhaps avoid emergence of single agent drug resistance.


Cancer Research | 2007

Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma

Amit K. Das; Benjamin P C Chen; Michael D. Story; Mitsuo Sato; John D. Minna; David J. Chen; Chaitanya S. Nirodi

The epidermal growth factor receptor (EGFR) is an important determinant of radioresponse, whose elevated expression and activity frequently correlates with radioresistance in several cancers, including non-small cell lung carcinoma (NSCLC). We reported recently that NSCLC cell lines harboring somatic, activating mutations in the tyrosine kinase domain (TKD) of the EGFR exhibit significant delays in the repair of DNA double-strand breaks (DSB) and poor clonogenic survival in response to radiation. Here, we explore the mechanisms underlying mutant EGFR-associated radiosensitivity. In three representative NSCLC cell lines, we show that, unlike wild-type (WT) EGFR, receptors with common oncogenic TKD mutations, L858R or DeltaE746-E750, are defective in radiation-induced translocation to the nucleus and fail to bind the catalytic and regulatory subunits of the DNA-dependent protein kinase (DNA-PK), a key enzyme in the nonhomologous end-joining repair pathway. Moreover, despite the presence of WT EGFR, stable exogenous expression of either the L858R or the DeltaE746-E750 mutant forms of EGFR in human bronchial epithelial cells significantly delays repair of ionizing radiation (IR)-induced DSBs, blocks the resolution of frank or microhomologous DNA ends, and abrogates IR-induced nuclear EGFR translocation or binding to DNA-PK catalytic subunit. Our study has identified a subset of naturally occurring EGFR mutations that lack a critical radioprotective function of EGFR, providing valuable insights on how the EGFR mediates cell survival in response to radiation in NSCLC cell lines.


Journal of Biological Chemistry | 2013

An Undesired Effect of Chemotherapy GEMCITABINE PROMOTES PANCREATIC CANCER CELL INVASIVENESS THROUGH REACTIVE OXYGEN SPECIES-DEPENDENT, NUCLEAR FACTOR κB- AND HYPOXIA-INDUCIBLE FACTOR 1α-MEDIATED UP-REGULATION OF CXCR4

Sumit Arora; Arun Bhardwaj; Seema Singh; Sanjeev K. Srivastava; Steven McClellan; Chaitanya S. Nirodi; Gary A. Piazza; William E. Grizzle; Laurie B. Owen; Ajay P. Singh

Background: CXCR4 signaling protects pancreatic cancer cells from gemcitabine toxicity. However, the effect of gemcitabine on this resistance mechanism is unclear. Results: Gemcitabine up-regulates CXCR4 expression in pancreatic cancer cells and promotes their invasiveness. Conclusion: CXCR4 signaling serves as a counterdefense mechanism against gemcitabine. Significance: These findings are significant for the formulation of effective therapeutic strategies against pancreatic cancer. Recently, we have shown that CXCL12/CXCR4 signaling plays an important role in gemcitabine resistance of pancreatic cancer (PC) cells. Here, we explored the effect of gemcitabine on this resistance mechanism. Our data demonstrate that gemcitabine induces CXCR4 expression in two PC cell lines (MiaPaCa and Colo357) in a dose- and time-dependent manner. Gemcitabine-induced CXCR4 expression is dependent on reactive oxygen species (ROS) generation because it is abrogated by pretreatment of PC cells with the free radical scavenger N-acetyl-L-cysteine. CXCR4 up-regulation by gemcitabine correlates with time-dependent accumulation of NF-κB and HIF-1α in the nucleus. Enhanced binding of NF-κB and HIF-1α to the CXCR4 promoter is observed in gemcitabine-treated PC cells, whereas their silencing by RNA interference causes suppression of gemcitabine-induced CXCR4 expression. ROS induction upon gemcitabine treatment precedes the nuclear accumulation of NF-κB and HIF-1α, and suppression of ROS diminishes these effects. The effect of ROS on NF-κB and HIF-1α is mediated through activation of ERK1/2 and Akt, and their pharmacological inhibition also suppresses gemcitabine-induced CXCR4 up-regulation. Interestingly, our data demonstrate that nuclear accumulation of NF-κB results from phosphorylation-induced degradation of IκBα, whereas HIF-1α up-regulation is NF-κB-dependent. Lastly, our data demonstrate that gemcitabine-treated PC cells are more motile and exhibit significantly greater invasiveness against a CXCL12 gradient. Together, these findings reinforce the role of CXCL12/CXCR4 signaling in gemcitabine resistance and point toward an unintended and undesired effect of chemotherapy.


Seminars in Radiation Oncology | 2010

Targeting nonhomologous end-joining through epidermal growth factor receptor inhibition: Rationale and strategies for radiosensitization

Bipasha Mukherjee; Hak Choy; Chaitanya S. Nirodi; Sandeep Burma

DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation or chemotherapeutic drugs used to eradicate cancer cells. The ability of cancer cells to effectively repair DSBs significantly influences the outcome of therapeutic regimens. Therefore, a new and important area of clinical cancer research is the development of DNA repair inhibitors that can be used as radio- or chemosensitizers. Nonhomologous end joining (NHEJ) is the predominant pathway for the repair of radiation-induced DSBs. A series of recent reports indicates that the epidermal growth factor receptor (EGFR) or its downstream components may modulate NHEJ through direct interaction with the DNA repair enzyme, DNA-dependent protein kinase. Because EGFR is overexpressed or activated in many cancers, these findings provide a compelling rationale for combining radiotherapy with therapies that block EGFR or its downstream signaling components. In this review, we delineate how these novel connections between a cell-surface receptor (EGFR) and a predominantly nuclear event (NHEJ) provide vulnerable nodes that can be selectively targeted to improve cancer therapy.


Seminars in Radiation Oncology | 2010

Radiogenomics predicting tumor responses to radiotherapy in lung cancer.

Amit K. Das; Marcus H. Bell; Chaitanya S. Nirodi; Michael D. Story; John D. Minna

The recently developed ability to interrogate genome-wide data arrays has provided invaluable insights into the molecular pathogenesis of lung cancer. These data have also provided information for developing targeted therapy in lung cancer patients based on the identification of cancer-specific vulnerabilities and set the stage for molecular biomarkers that provide information on clinical outcome and response to treatment. In addition, there are now large panels of lung cancer cell lines, both non-small-cell lung cancer and small-cell lung cancer, that have distinct chemotherapy and radiation response phenotypes. We anticipate that the integration of molecular data with therapy response data will allow for the generation of biomarker signatures that predict response to therapy. These signatures will need to be validated in clinical studies, at first retrospective analyses and then prospective clinical trials, to show that the use of these biomarkers can aid in predicting patient outcomes (eg, in the case of radiation therapy for local control and survival). This review highlights recent advances in molecular profiling of tumor responses to radiotherapy and identifies challenges and opportunities in developing molecular biomarker signatures for predicting radiation response for individual patients with lung cancer.


Molecular Cancer Research | 2012

Threonine 2609 phosphorylation of the DNA-dependent Protein Kinase is a critical prerequisite for epidermal growth factor receptor mediated radiation resistance

Prashanthi Javvadi; Haruhiko Makino; Amit K. Das; Yu Fen Lin; David J. Chen; Benjamin P C Chen; Chaitanya S. Nirodi

The EGF receptor (EGFR) contributes to tumor radioresistance, in part, through interactions with the catalytic subunit of DNA-dependent protein kinase (DNA-PKc), a key enzyme in the nonhomologous end joining DNA repair pathway. We previously showed that EGFR-DNA-PKcs interactions are significantly compromised in the context of activating mutations in EGFR in non–small cell lung carcinoma (NSCLC) and human bronchial epithelial cells. Here, we investigate the reciprocal relationship between phosphorylation status of DNA-PKcs and EGFR-mediated radiation response. The data reveal that both the kinase activity of DNA-PKcs and radiation-induced phosphorylation of DNA-PKcs by the ataxia telangiectasia–mutated (ATM) kinase are critical prerequisites for EGFR-mediated radioresponse. Alanine substitutions at seven key serine/threonine residues in DNA-PKcs or inhibition of DNA-PKcs by NU7441 completely abrogated EGFR-mediated radioresponse and blocked EGFR binding. ATM deficiency or ATM inhibition with KU55933 produced a similar effect. Importantly, alanine substitution at an ATM-dependent DNA-PKcs phosphorylation site, T2609, was sufficient to block binding or radioresponse of EGFR. However, mutation of a DNA-PKcs autophosphorylation site, S2056 had no such effect indicating that DNA-PKcs autophosphorylation is not necessary for EGFR-mediated radioresponse. Our data reveal that in both NSCLCs and human bronchial epithelial cells, activating mutations in EGFR specifically abolished the DNA-PKcs phosphorylation at T2609, but not S2056. Our study underscores the critical importance of a reciprocal relationship between DNA-PKcs phosphorylation and EGFR-mediated radiation response and elucidates mechanisms underlying mutant EGFR-associated radiosensitivity in NSCLCs. Mol Cancer Res; 10(10); 1359–68. ©2012 AACR.


Prostaglandins & Other Lipid Mediators | 2010

Structural determinants for calcium mobilization by prostaglandin E2 and prostaglandin F2α glyceryl esters in RAW 264.7 cells and H1819 cells

Robyn Richie-Jannetta; Chaitanya S. Nirodi; Brenda C. Crews; David F. Woodward; Jenny W. Wang; Peter T. Duff; Lawrence J. Marnett

2-Arachidonoylglycerol is oxygenated by cyclooxygenase-2 to form prostaglandin glyceryl esters. Previous work in this laboratory has suggested that PGE(2)-G activates a novel G protein-coupled receptor in a murine macrophage-like cell line, RAW 264.7. To probe the structural determinants for the putative receptor in RAW 264.7 cells, a panel of 10 analogs was tested for their ability to increase intracellular calcium. These analogs included PGE(2)- and PGF(2alpha)-ethanolamide, 4 PGE(2) glyceryl ester analogs, and 4 PGF(2alpha) glyceryl ester analogs. The glyceryl ester analogs differed in the positioning of the hydroxyl groups in the glycerol moiety and the type of linker (ester, amide, or thioester) of the prostaglandin to the glycerol moiety. Compounds were also evaluated in a human non-small cell lung cancer cell line (H1819). The glycerol moiety was required for the calcium response. All glyceryl ester analogs but not ethanolamides caused a concentration-dependent increase in calcium levels in both RAW 264.7 and H1819 cells. An amide or ester linkage was preferable to a thioester linkage. The EC(50) values did not significantly change when the positioning of the hydroxyls was varied. This calcium response induced by the glyceryl ester analogs appears to be independent of the putative hydrolysis products, PGE(2) and PGF(2alpha), and appears to represent a novel signaling pathway.


Scientific Reports | 2015

The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells

Napapat Amornwichet; Takahiro Oike; Atsushi Shibata; Chaitanya S. Nirodi; Hideaki Ogiwara; Haruhiko Makino; Yuka Kimura; Yuka Hirota; Mayu Isono; Yukari Yoshida; Tatsuya Ohno; Takashi Kohno; Takashi Nakano

Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.


Archive | 2012

Radiobiology of Stereotactic Body Radiation Therapy/Stereotactic Ablative Radiotherapy

Michael D. Story; Chaitanya S. Nirodi; Clinton Park

Stereotactic body radiation therapy (SBRT) or stereotactic ablative radiotherapy (SABR) is rapidly being adopted as a treatment modality, particularly for liver and lung tumors, and because of the dramatic improvements in tumor control, the use of SBRT is being directed toward other anatomical sites. The success of SBRT has been primarily technology-driven; however, application of fully potent SBRT regimes is now impeded by biological limitations. While the use of SBRT will continue to increase, there are aspects of both normal tissue and tumor response to high dose per fraction radiation exposures that require a further understanding in order to augment the technology gains as well as to minimize the potential harm done by inappropriate application of fully potent SBRT regimes. From a radiobiological perspective, there is a shift in thinking about the models used to extrapolate biological effects at high dose per fraction although the underlying mechanisms are not understood. There are also potential scheduling benefits for SBRT that can be exploited. As such, it may be appropriate to re-examine radioprotective or hypoxic cell cytotoxic agents that were either abandoned or not actively used given their considerable side effects. This may be especially true for hypoxia as the argument can be made on a mechanistic basis that SBRT is inappropriate for use with hypoxic tumors. However, we would challenge that notion. We will discuss these topics from a radiobiological perspective.

Collaboration


Dive into the Chaitanya S. Nirodi's collaboration.

Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael D. Story

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amit K. Das

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luc Girard

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Peyton

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sandeep Burma

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi F. Gazdar

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge