Chamindra Vithana
Southern Cross University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chamindra Vithana.
Soil Research | 2013
Chamindra Vithana; Leigh A Sullivan; Richard T Bush; Edward D Burton
In Australia, the assessment of acidity hazard in acid sulfate soils requires the estimation of operationally defined acidity fractions such as actual acidity, potential sulfidic acidity, and retained acidity. Acid–base accounting approaches in Australia use these acidity fractions to estimate the net acidity of acid sulfate soils materials. Retained acidity is the acidity stored in the secondary Fe/Al hydroxy sulfate minerals, such as jarosite, natrojarosite, schwertmannite, and basaluminite. Retained acidity is usually measured as either net acid-soluble sulfur (SNAS) or residual acid soluble sulfur (SRAS). In the present study, contributions of schwertmannite and jarosite to the retained acidity, actual acidity, and potential sulfidic acidity fractions were systematically evaluated using SNAS and SRAS techniques. The data show that schwertmannite contributed considerably to the actual acidity fraction and that it does not contribute solely to the retained acidity fraction as has been previously conceptualised. As a consequence, SNAS values greatly underestimated the schwertmannite content. For soil samples in which jarosite is the only mineral present, a better estimate of the added jarosite content can be obtained by using a correction factor of 2 to SNAS values to account for the observed 50–60% recovery. Further work on a broader range of jarosite samples is needed to determine whether this correction factor has broad applicability. The SRAS was unable to reliably quantify either the schwertmannite or the jarosite content and, therefore, is not suitable for quantification of the retained acidity fraction. Potential sulfidic acidity in acid sulfate soils is conceptually derived from reduced inorganic sulfur minerals and has been estimated by the peroxide oxidation approach, which is used to derive the SRAS values. However, both schwertmannite and jarosite contributed to the peroxide-oxidisable sulfur fraction, implying a major potential interference by those two minerals to the determination of potential sulfidic acidity in acid sulfate soils through the peroxide oxidation approach.
Geoderma | 2015
Chamindra Vithana; Leigh A Sullivan; Edward D Burton; Richard T Bush
Chemical Geology | 2014
Chamindra Vithana; Leigh A Sullivan; Edward D Burton; Richard T Bush
Geoderma | 2015
Chamindra Vithana; Leigh A Sullivan; Richard T Bush; Edward D Burton
Chemical Geology | 2018
Chamindra Vithana; Scott G Johnston; Nigel Dawson
Water Research | 2017
Chamindra Vithana; Leigh Sullivan; Troy Shepherd
Archive | 2014
Chamindra Vithana; Leigh A Sullivan; Richard T Bush; Edward D Burton
Applied Geochemistry | 2014
Chamindra Vithana; Leigh A Sullivan; Richard T Bush; Edward D Burton
Archive | 2013
Chamindra Vithana; Leigh A Sullivan; Richard T Bush; Edward D Burton
Archive | 2012
Chamindra Vithana; Leigh A Sullivan; Richard T Bush; Edward D Burton