Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward D Burton is active.

Publication


Featured researches published by Edward D Burton.


Environmental Science & Technology | 2009

Sorption of arsenic(V) and arsenic(III) to schwertmannite

Edward D Burton; Richard T Bush; Scott G Johnston; Kym Marjorie Watling; Rosalie K. Hocking; Leigh A Sullivan; Gretel K. Parker

This study describes the sorption of As(V) and As(III) to schwertmannite as a function of pH and arsenic loading. In general, sorption of As(V) was greatest at low pH, whereas high pH favored the sorption of As(III). The actual pH of equivalent As(V) and As(III) sorption was strongly loading dependent, decreasing from pH approximately 8.0 at loadings <120 mmol(As) mol(Fe)(-1) to pH approximately 4.6 at a loading of 380 mmol(As) mol(Fe)(-1). Sorption isotherms for As(V) were characterized by strong partitioning to the schwertmannite solid-phase at low loadings and sorption capacities of 225-330 mmol(As(V)) mol(Fe)(-1) at high loadings. In contrast, the As(III) isotherms revealed a weak affinity for sorption of As(III) versus As(V) at low loadings yet a greater affinity for As(III) sorption compared with As(V) at high loadings (when pH > 4.6). Sorption of As(V) and As(III) caused significant release of SO(4)(2-) from within the schwertmannite solid-phase, without major degradation of the schwertmannite structure (as evident by X-ray diffraction and Raman spectroscopy). This can be interpreted as arsenic sorption via incorporation into the schwertmannite structure, rather than merely surface complexation at the mineral-water interface. The results of this study have important implications for arsenic mobility in the presence of schwertmannite, such as in areas affected by acid-mine drainage and acid-sulfate soils. In particular, arsenic speciation, arsenic loading, and pH should be considered when predicting and managing arsenic mobility in schwertmannite-rich systems.


Environmental Science & Technology | 2014

Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction

Edward D Burton; Scott G Johnston; Benjamin D. Kocar

In floodplain soils, As may be released during flooding-induced soil anoxia, with the degree of mobilization being affected by microbial redox processes such as the reduction of As(V), Fe(III), and SO4(2-). Microbial SO4(2-) reduction may affect both Fe and As cycling, but the processes involved and their ultimate consequences on As mobility are not well understood. Here, we examine the effect of microbial SO4(2) reduction on solution dynamics and solid-phase speciation of As during flooding of an As-contaminated soil. In the absence of significant levels of microbial SO4(2-) reduction, flooding caused increased Fe(II) and As(III) concentrations over a 10 week period, which is consistent with microbial Fe(III)- and As(V)-reduction. Microbial SO4(2-) reduction leads to lower concentrations of porewater Fe(II) as a result of FeS formation. Scanning electron microscopy with energy dispersive X-ray fluorescence spectroscopy revealed that the newly formed FeS sequestered substantial amounts of As. Bulk and microfocused As K-edge X-ray absorption near-edge structure spectroscopy confirmed that As(V) was reduced to As(III) and showed that in the presence of FeS, solid-phase As was retained partly via the formation of an As2S3-like species. High resolution transmission electron microscopy suggested that this was due to As retention as an As2S3-like complex associated with mackinawite (tetragonal FeS) rather than as a discrete As2S3 phase. This study shows that mackinawite formation in contaminated floodplain soil can help mitigate the extent of arsenic mobilization during prolonged flooding.


Environmental Science & Technology | 2010

Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.

Edward D Burton; Scott G Johnston; Kym Marjorie Watling; Richard T Bush; Annabelle F Keene; Leigh A Sullivan

In acid-mine drainage and acid-sulfate soil environments, the cycling of Fe and As are often linked to the formation and fate of schwertmannite (Fe(8)O(8)(OH)(8-2x)(SO(4))(x)). When schwertmannite-rich material is subjected to near-neutral Fe(III)-reducing conditions (e.g., in reflooded acid-sulfate soils or mining-lake sediments), the resulting Fe(II) can catalyze transformation of schwertmannite to goethite. This work examines the effects of arsenic(V) and arsenic(III) on the Fe(II)-catalyzed transformation of schwertmannite and investigates the associated consequences of this mineral transformation for arsenic mobilization. A series of 9-day anoxic transformation experiments were conducted with synthetic schwertmannite and various additions of Fe(II), As(III), and As(V). X-ray diffraction (XRD) and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy demonstrated that, in the absence of Fe(II), schwertmannite persisted as the dominant mineral phase. Under arsenic-free conditions, 10 mM Fe(II) catalyzed rapid and complete transformation of schwertmannite to goethite. However, the magnitude of Fe(II)-catalyzed transformation decreased to 72% in the presence of 1 mM As(III) and to only 6% in the presence of 1 mM As(V). This partial Fe(II)-catalyzed transformation of As(III)-sorbed schwertmannite did not cause considerable As(III) desorption. In contrast, the formation of goethite via partial transformation of As(III)- and As(V)-sorbed schwertmannite significantly decreased arsenic mobilization under Fe(III)-reducing conditions. This implies that the Fe(II)-catalyzed transformation of schwertmannite to goethite may help to stabilize solid-phase arsenic and retard its subsequent release to groundwater.


Environmental Science & Technology | 2010

Arsenic Mobilization in a Seawater Inundated Acid Sulfate Soil

Scott G Johnston; Annabelle F Keene; Edward D Burton; Richard T Bush; Leigh A Sullivan; Angus E McElnea; C Douglas Smith; Bernard Powell; Rosalie K. Hocking

Tidal seawater inundation of coastal acid sulfate soils can generate Fe- and S0(4)-reducing conditions in previously oxic-acidic sediments. This creates potential for mobilization of As during the redox transition. We explore the consequences for As by investigating the hydrology, porewater geochemistry, solid-phase speciation, and mineralogical partitioning of As across two tidal fringe toposequences. Seawater inundation induced a tidally controlled redox gradient Maximum porewater As (~400 μg/L) occurred in the shallow (<1 m), intertidal, redox transition zone between Fe-oxidizing and S0(4)-reducing conditions. Primary mechanisms of As mobilization include the reduction of solid-phase As(V) to As(lll), reductive dissolution of As(V)-bearing secondary Fe(lll) minerals and competitive anion desorption. Porewater As concentrations decreased in the zone of contemporary pyrite reformation. Oscillating hydraulic gradients caused by tidal pumping promote upward advection of As and Fe(2+)-enriched porewater in the intertidal zone, leading to accumulation of As(V)-enriched Fe(lll) (hydr)oxides at the oxic sediment-water interface. While this provides a natural reactive-Fe barrier, it does not completely retard the flux of porewater As to overtopping surface waters. Furthermore, the accumulated Fe minerals may be prone to future reductive dissolution. A conceptual model describing As hydro-geochemical coupling across an intertidal fringe is presented.


Soil & Sediment Contamination | 2006

Factors Controlling the Geochemical Partitioning of Trace Metals in Estuarine Sediments

Edward D Burton; Ian Phillips; Darryl William Hawker

The geochemical partitioning of trace metals in sediments is of great importance in risk assessment and remedial investigation. Selected factors that may control the partitioning behavior of Cu, Pb and Zn in non-sulfidic, estuarine sediments were examined with the use of combined sorption curve—sequential extraction analysis. This approach, which has not been previously used to examine estuarine sediments, allowed determination of sorption parameters for Cu, Pb and Zn partitioning to individual geochemical fractions. Partitioning behavior in sulfidic sediments was also determined by sequentially extracting Cu, Pb, and Zn from synthetic sulfide minerals and from natural sediment and pure quartz sand after spiking with acid-volatile sulfide (AVS). Trace metal sorption to the “carbonate” fraction (pH 5, NaOAc extraction) increased with metal loading due to saturation of sorption sites associated with the “Fe-oxide” (NH2OH·HCl extraction) and “organic” (H2O2 extraction) fractions in non-sulfidic sediments. Freundlich parameters describing sorption to the “Fe-oxide” and “organic” fractions were controlled by the sediment Fe-oxide and organic carbon content, respectively. Sequential extraction of Cu from pure CuS, AVS-spiked sediment and AVS-spiked quartz sand showed that AVS-bound Cu was quantitatively recovered in association with the “organic” fraction. However, some AVS-bound Pb and Zn were recovered by the NH2OH·HCl step (which has been previously interpreted as “Fe-oxide” bound metals) in the sequential extraction procedure used in this study. This indicates that the sequential extraction of Pb and Zn in sulfidic sediments may lead to AVS-bound metals being mistaken as Fe-oxide bound species. Caution should therefore be exercised when interpreting sequential extraction results for Pb and Zn in anoxic sediments.


Environmental Science & Technology | 2011

Iron and arsenic cycling in intertidal surface sediments during wetland remediation.

Scott G Johnston; Annabelle F Keene; Edward D Burton; Richard T Bush; Leigh A Sullivan

The accumulation and behavior of arsenic at the redox interface of Fe-rich sediments is strongly influenced by Fe(III) precipitate mineralogy, As speciation, and pH. In this study, we examined the behavior of Fe and As during aeration of natural groundwater from the intertidal fringe of a wetland being remediated by tidal inundation. The groundwater was initially rich in Fe(2+) (32 mmol L(-1)) and As (1.81 μmol L(-1)) with a circum-neutral pH (6.05). We explore changes in the solid/solution partitioning, speciation and mineralogy of Fe and As during long-term continuous groundwater aeration using a combination of chemical extractions, SEM, XRD, and synchrotron XAS. Initial rapid Fe(2+) oxidation led to the formation of As(III)-bearing ferrihydrite and sorption of >95% of the As(aq) within the first 4 h of aeration. Ferrihydrite transformed to schwertmannite within 23 days, although sorbed/coprecipitated As(III) remained unoxidized during this period. Schwertmannite subsequently transformed to jarosite at low pH (2-3), accompanied by oxidation of remaining Fe(2+). This coincided with a repartitioning of some sorbed As back into the aqueous phase as well as oxidation of sorbed/coprecipitated As(III) to As(V). Fe(III) precipitates formed via groundwater aeration were highly prone to reductive dissolution, thereby posing a high risk of mobilizing sorbed/coprecipitated As during any future upward migration of redox boundaries. Longer-term investigations are warranted to examine the potential pathways and magnitude of arsenic mobilization into surface waters in tidally reflooded wetlands.


Environmental Science & Technology | 2013

Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.

Edward D Burton; Scott G Johnston; Peter Kraal; Richard T Bush; Salirian R Claff

The effect of SO4(2-) availability on the microbially mediated reductive transformation of As(V)-coprecipitated schwertmannite (Fe8O8(OH)3.2(SO4)2.4(AsO4)0.004) was examined in long-term (up to 400 days) incubation experiments. Iron EXAFS spectroscopy showed siderite (FeCO3) and mackinawite (FeS) were the dominant secondary Fe(II) minerals produced via reductive schwertmannite transformation. In addition, ∼ 25% to ∼ 65% of the initial schwertmannite was also transformed relatively rapidly to goethite (αFeOOH), with the extent of this transformation being dependent on SO4(2-) concentrations. More specifically, the presence of high SO4(2-) concentrations acted to stabilize schwertmannite, retarding its transformation to goethite and allowing its partial persistence over the 400 day experiment duration. Elevated SO4(2-) also decreased the extent of dissimilatory reduction of Fe(III) and As(V), instead favoring dissimilatory SO4(2-) reduction. In contrast, where SO4(2-) was less available, there was near-complete reduction of schwertmannite- and goethite-derived Fe(III) as well as solid-phase As(V). As a result, under low SO4(2-) conditions, almost no Fe(III) or As(V) remained toward the end of the experiment and arsenic solid-phase partitioning was controlled mainly by sorptive interactions between As(III) and mackinawite. These As(III)-mackinawite interactions led to the formation of an orpiment (As2S3)-like species. Interestingly, this orpiment-like arsenic species did not form under SO4(2-)-rich conditions, despite the prevalence of dissimilatory SO4(2-) reduction. The absence of an arsenic sulfide species under SO4(2-)-rich conditions appears to have been a consequence of schwertmannite persistence, combined with the preferential retention of arsenic oxyanions by schwertmannite. The results highlight the critical role that SO4(2-) availability can play in controlling solid-phase arsenic speciation, particularly arsenic-sulfur interactions, under reducing conditions in soils, sediments, and shallow groundwater systems.


Science of The Total Environment | 2012

Water chemistry and nutrient release during the resuspension of FeS-rich sediments in a eutrophic estuarine system

Bree Morgan; Andrew W. Rate; Edward D Burton

The objective of this study was to investigate the impact of resuspending FeS-rich benthic sediment on estuarine water chemistry. To address this objective, we conducted (1) a series of laboratory-based sediment resuspension experiments and (2) also monitored changes in surface water composition during field-based sediment resuspension events that were caused by dredging activities in the Peel-Harvey Estuary, Western Australia. Our laboratory resuspension experiments showed that the resuspension of FeS-rich sediments rapidly deoxygenated estuarine water. In contrast, dredging activities in the field did not noticeably lower O(2) concentrations in adjacent surface water. Additionally, while FeS oxidation in the laboratory resuspensions caused measurable decreases in pH, the field pH was unaffected by the dredging event and dissolved trace metal concentrations remained very low throughout the monitoring period. Dissolved ammonium (NH(4)(+)) and inorganic phosphorus (PO(4)-P) were released into the water column during the resuspension of sediments in both the field and laboratory. Following its initial release, PO(4)-P was rapidly removed from solution in the laboratory-based (<1h) and field-based (<100 m from sediment disposal point) investigations. In comparison to PO(4)-P, NH(4)(+) release was observed to be more prolonged over the 2-week period of the laboratory resuspension experiments. However, our field-based observations revealed that elevated NH(4)(+) concentrations were localised to <100 m from the sediment disposal point. This study demonstrates that alongside the emphasis on acidification, deoxygenation and metal release during FeS resuspension, it is important to consider the possibility of nutrient release from disturbed sediments in eutrophic estuaries.


Marine Pollution Bulletin | 2010

Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia

Annabelle F Keene; Scott G Johnston; Richard T Bush; Edward D Burton; Leigh A Sullivan

This study examines the abundance of trace elements in surface sediments of a former acid sulfate soil (ASS) wetland subjected to marine tidal inundation. Sediment properties of this highly modified study site are compared with those of an adjacent unmodified, intertidal mangrove forest. Whilst some trace elements (Al, Cd, Mn, Ni and Zn) were clearly depleted due to mobilisation and leaching in the previous oxic-acidic phase, other trace elements (As and Cr) displayed significant enrichment in the tidally inundated ASS. Many trace elements were strongly associated with the reactive Fe and acid volatile sulfide (AVS) fractions, suggesting that trace elements may be adsorbed to abundant reactive Fe phases or sequestered as sulfide minerals. These findings provide an important understanding of the fate and mobility of reactive iron, AVS and trace elements during tidal remediation of a formerly acidified Great Barrier Reef (GBR) catchment.


Environmental Science & Technology | 2013

Decoupling between Water Column Oxygenation and Benthic Phosphate Dynamics in a Shallow Eutrophic Estuary

Peter Kraal; Edward D Burton; Andrew L. Rose; Michael D Cheetham; Richard T Bush; Leigh A Sullivan

Estuaries are crucial biogeochemical filters at the land-ocean interface that are strongly impacted by anthropogenic nutrient inputs. Here, we investigate benthic nitrogen (N) and phosphorus (P) dynamics in relation to physicochemical surface sediment properties and bottom water mixing in the shallow, eutrophic Peel-Harvey Estuary. Our results show the strong dependence of sedimentary P release on Fe and S redox cycling. The estuary contains surface sediments that are strongly reducing and act as net P source, despite physical sediment mixing under an oxygenated water column. This decoupling between water column oxygenation and benthic P dynamics is of great importance to understand the evolution of nutrient dynamics in marine systems in response to increasing nutrient loadings. In addition, the findings show that the relationship between P burial efficiency and bottom water oxygenation depends on local conditions; sediment properties rather than oxygen availability may control benthic P recycling. Overall, our results illustrate the complex response of an estuary to environmental change because of interacting physical and biogeochemical processes.

Collaboration


Dive into the Edward D Burton's collaboration.

Top Co-Authors

Avatar

Richard T Bush

Southern Cross University

View shared research outputs
Top Co-Authors

Avatar

Leigh A Sullivan

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas J Ward

Southern Cross University

View shared research outputs
Researchain Logo
Decentralizing Knowledge