Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chandan Kumar-Sinha is active.

Publication


Featured researches published by Chandan Kumar-Sinha.


Nature | 2002

The polycomb group protein EZH2 is involved in progression of prostate cancer

Sooryanarayana Varambally; Saravana M. Dhanasekaran; Ming Zhou; Terrence R. Barrette; Chandan Kumar-Sinha; Martin G. Sanda; Debashis Ghosh; Kenneth J. Pienta; Richard George Antonius Bernardus Sewalt; Arie P. Otte; Mark A. Rubin; Arul M. Chinnaiyan

Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling, that the polycomb group protein enhancer of zeste homolog 2 (EZH2) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.


Science | 2008

Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer.

Sooryanarayana Varambally; Qi Cao; Ram Shankar Mani; Sunita Shankar; Xiaosong Wang; Bushra Ateeq; Bharathi Laxman; Xuhong Cao; Xiaojun Jing; Kalpana Ramnarayanan; J. Chad Brenner; Jindan Yu; Jung Kim; Bo Han; Patrick Tan; Chandan Kumar-Sinha; Robert J. Lonigro; Nallasivam Palanisamy; Christopher A. Maher; Arul M. Chinnaiyan

Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes and regulates the survival and metastasis of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain unclear. Here we show that the expression and function of EZH2 in cancer cell lines are inhibited by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101 expression decreases during cancer progression, paralleling an increase in EZH2 expression. One or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically localized prostate cancer cells (6 of 16) and 66.7% of metastatic disease cells (22 of 33). We propose that the genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant dysregulation of epigenetic pathways, resulting in cancer progression.


Nature | 2009

Transcriptome Sequencing to Detect Gene Fusions in Cancer

Christopher A. Maher; Chandan Kumar-Sinha; Xuhong Cao; Shanker Kalyana-Sundaram; Bo Han; Xiaojun Jing; Lee Sam; Terrence R. Barrette; Nallasivam Palanisamy; Arul M. Chinnaiyan

Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully used integrative transcriptome sequencing to ‘re-discover’ the BCR–ABL1 (ref. 10) gene fusion in a chronic myelogenous leukaemia cell line and the TMPRSS2–ERG gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimaeric transcripts in cancer cell lines and tumours. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimaeras using high-throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Chimeric transcript discovery by paired-end transcriptome sequencing

Christopher A. Maher; Nallasivam Palanisamy; John C. Brenner; Xuhong Cao; Shanker Kalyana-Sundaram; Shujun Luo; Irina Khrebtukova; Terrence R. Barrette; Catherine S. Grasso; Jindan Yu; Robert J. Lonigro; Gary P. Schroth; Chandan Kumar-Sinha; Arul M. Chinnaiyan

Recurrent gene fusions are a prevalent class of mutations arising from the juxtaposition of 2 distinct regions, which can generate novel functional transcripts that could serve as valuable therapeutic targets in cancer. Therefore, we aim to establish a sensitive, high-throughput methodology to comprehensively catalog functional gene fusions in cancer by evaluating a paired-end transcriptome sequencing strategy. Not only did a paired-end approach provide a greater dynamic range in comparison with single read based approaches, but it clearly distinguished the high-level “driving” gene fusions, such as BCR-ABL1 and TMPRSS2-ERG, from potential lower level “passenger” gene fusions. Also, the comprehensiveness of a paired-end approach enabled the discovery of 12 previously undescribed gene fusions in 4 commonly used cell lines that eluded previous approaches. Using the paired-end transcriptome sequencing approach, we observed read-through mRNA chimeras, tissue-type restricted chimeras, converging transcripts, diverging transcripts, and overlapping mRNA transcripts. Last, we successfully used paired-end transcriptome sequencing to detect previously undescribed ETS gene fusions in prostate tumors. Together, this study establishes a highly specific and sensitive approach for accurately and comprehensively cataloguing chimeras within a sample using paired-end transcriptome sequencing.


Nature Medicine | 2011

Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer.

Dan R. Robinson; Shanker Kalyana-Sundaram; Yi Mi Wu; Sunita Shankar; Xuhong Cao; Bushra Ateeq; Irfan A. Asangani; Matthew K. Iyer; Christopher A. Maher; Catherine S. Grasso; Robert J. Lonigro; Michael J. Quist; Javed Siddiqui; Rohit Mehra; Xiaojun Jing; Thomas J. Giordano; Michael S. Sabel; Celina G. Kleer; Nallasivam Palanisamy; Rachael Natrajan; Maryou B. Lambros; Jorge S. Reis-Filho; Chandan Kumar-Sinha; Arul M. Chinnaiyan

Breast cancer is a heterogeneous disease that has a wide range of molecular aberrations and clinical outcomes. Here we used paired-end transcriptome sequencing to explore the landscape of gene fusions in a panel of breast cancer cell lines and tissues. We observed that individual breast cancers have a variety of expressed gene fusions. We identified two classes of recurrent gene rearrangements involving genes encoding microtubule-associated serine-threonine kinase (MAST) and members of the Notch family. Both MAST and Notch-family gene fusions have substantial phenotypic effects in breast epithelial cells. Breast cancer cell lines harboring Notch gene rearrangements are uniquely sensitive to inhibition of Notch signaling, and overexpression of MAST1 or MAST2 gene fusions has a proliferative effect both in vitro and in vivo. These findings show that recurrent gene rearrangements have key roles in subsets of carcinomas and suggest that transcriptome sequencing could identify individuals with rare, targetable gene fusions.


American Journal of Pathology | 2004

C5a-Induced Gene Expression in Human Umbilical Vein Endothelial Cells

Eric A. Albrecht; Arul M. Chinnaiyan; Sooryanarayana Varambally; Chandan Kumar-Sinha; Terrence R. Barrette; J. Vidya Sarma; Peter A. Ward

The endothelium plays a critical role in the inflammatory process. The complement activation product, C5a, is known to have proinflammatory effects on the endothelium, but the molecular mechanisms remain unclear. We have used cDNA microarray analysis to assess gene expression in human umbilical vein endothelial cells (HUVECs) that were stimulated with human C5a in vitro. Chip analyses were confirmed by reverse transcriptase-polymerase chain reaction and by Western blot analysis. Gene activation responses were remarkably similar to gene expression patterns of HUVECs stimulated with human tumor necrosis factor-alpha or bacterial lipopolysaccharide. HUVECs stimulated with C5a showed progressive increases in gene expression for cell adhesion molecules (eg, E-selectin, ICAM-1, VCAM-1), cytokines/chemokines, and related receptors (eg, VEGFC, IL-6, IL-18R). Surprisingly, HUVECs showed little evidence for up-regulation of complement-related genes. There were transient increases in gene expression associated with broad functional activities. The three agonists used also caused down-regulation of genes that regulate angiogenesis and drug metabolism. With a single exception, C5a caused little evidence of activation of complement-related genes. These studies indicate that endothelial cells respond robustly to C5a by activation of genes related to progressive expression of cell adherence molecules, and cytokines and chemokines in a manner similar to responses induced by tumor necrosis factor-alpha and lipopolysaccharide.


Cancer Research | 2007

Integrative Analysis of Genomic Aberrations Associated with Prostate Cancer Progression

Jung Kim; Saravana M. Dhanasekaran; Rohit Mehra; Scott A. Tomlins; Wenjuan Gu; Jianjun Yu; Chandan Kumar-Sinha; Xuhong Cao; Atreya Dash; Lei Wang; Debashis Ghosh; Kerby Shedden; James E. Montie; Mark A. Rubin; Kenneth J. Pienta; Rajal B. Shah; Arul M. Chinnaiyan

Integrative analysis of genomic aberrations in the context of trancriptomic alterations will lead to a more comprehensive perspective on prostate cancer progression. Genome-wide copy number changes were monitored using array comparative genomic hybridization of laser-capture microdissected prostate cancer samples spanning stages of prostate cancer progression, including precursor lesions, clinically localized disease, and metastatic disease. A total of 62 specific cell populations from 38 patients were profiled. Minimal common regions (MCR) of alterations were defined for each sample type, and metastatic samples displayed the most number of alterations. Clinically localized prostate cancer samples with high Gleason grade resembled metastatic samples with respect to the size of altered regions and number of affected genes. A total of 9 out of 13 MCRs in the putative precursor lesion, high-grade prostatic intraepithelial neoplasia (PIN), showed an overlap with prostate cancer cases (amplifications in 3q29, 5q31.3-q32, 6q27, and 8q24.3 and deletions in 6q22.31, 16p12.2, 17q21.2, and 17q21.31), whereas postatrophic hyperplasia (PAH) did not exhibit this overlap. Interestingly, prostate cancers that do not overexpress ETS family members (i.e., gene fusion-negative prostate cancers) harbor differential aberrations in 1q23, 6q16, 6q21, 10q23, and 10q24. Integrative analysis with matched mRNA profiles identified genetic alterations in several proposed candidate genes implicated in prostate cancer progression.


Molecular Cell | 2013

Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer.

Irfan A. Asangani; Bushra Ateeq; Qi Cao; Lois Dodson; Mithil Pandhi; Lakshmi P. Kunju; Rohit Mehra; Robert J. Lonigro; Javed Siddiqui; Nallasivam Palanisamy; Yi Mi Wu; Xuhong Cao; Jung Kim; Meng Zhao; Zhaohui S. Qin; Mathew K. Iyer; Christopher A. Maher; Chandan Kumar-Sinha; Sooryanarayana Varambally; Arul M. Chinnaiyan

Histone methyltransferases (HMTases), as chromatin modifiers, regulate the transcriptomic landscape in normal development as well in diseases such as cancer. Here, we molecularly order two HMTases, EZH2 and MMSET, that have established genetic links to oncogenesis. EZH2, which mediates histone H3K27 trimethylation and is associated with gene silencing, was shown to be coordinately expressed and function upstream of MMSET, which mediates H3K36 dimethylation and is associated with active transcription. We found that the EZH2-MMSET HMTase axis is coordinated by a microRNA network and that the oncogenic functions of EZH2 require MMSET activity. Together, these results suggest that the EZH2-MMSET HMTase axis coordinately functions as a master regulator of transcriptional repression, activation, and oncogenesis and may represent an attractive therapeutic target in cancer.


Breast Cancer Research and Treatment | 2004

RhoC Induces Differential Expression of Genes Involved in Invasion and Metastasis in MCF10A Breast Cells

Mei Wu; Zhi Fen Wu; Chandan Kumar-Sinha; Arul M. Chinnaiyan; Sofia D. Merajver

Inflammatory breast cancer (IBC) is the most deadly form of breast cancer in humans presumably due to its ability to metastasize from its inception. In our laboratory, overexpression of RhoC GTPase was observed to be specific for IBC tumors, but not for stage-matched, non-IBC tumors. RhoC is known to contribute to an IBC-like phenotype in HPV-E6E7 immortalized breast cells. To further study the effect of RhoC overexpression on IBC metastasis, we generated stable transfectants of spontaneous immortalized mammary epithelial cells (MCF10A) overexpressing wild-type RhoC or a constitutively active RhoC mutant (G14V). Both the RhoC wild type and the G14V transfectants were highly invasive and proliferated more rapidly compared to vector-only control clones. Overexpression of RhoC led to an increase in actin stress fiber and focal adhesion contact formation. Comparative microarray analysis of these clones further revealed that RhoC overexpression upregulated 108 genes whereas seven genes were down-regulated. We have further verified by quantitative RT-PCR that genes involved in cell proliferation, invasion/adhesion, and angiogenesis were modulated by RhoC. This work suggests strong candidates for the downstream oncogenic functions of RhoC.


American Journal of Pathology | 2004

Elevated α-Methylacyl-CoA Racemase Enzymatic Activity in Prostate Cancer

Chandan Kumar-Sinha; Rajal B. Shah; Bharathi Laxman; Scott A. Tomlins; Jason Harwood; Werner Schmitz; Ernst Conzelmann; Martin G. Sanda; John T. Wei; Mark A. Rubin; Arul M. Chinnaiyan

α-Methylacyl-CoA racemase (AMACR) is a peroxisomal and mitochondrial enzyme involved in the β-oxidation of branched fatty acids, shown to be elevated in prostate cancer by several recent studies. Sequence variants of AMACR have been linked to prostate cancer risk. Although mRNA transcript, protein, and sequence variants of AMACR have been studied in the context of prostate cancer, AMACR enzymatic activity has not been addressed. Here we present evidence that AMACR activity is consistently elevated in prostate cancer tissue specimens. This activity can be immunodepleted from prostate cancer tissue extracts. Furthermore, mock needle biopsy cores containing foci of prostate cancer exhibited increased AMACR enzymatic activity, correlating with both protein levels and histopathology. Taken together, our studies suggest that AMACR activity is increased in prostate cancer relative to benign epithelia and suggests that monitoring AMACR activity levels in prostate needle biopsies may have clinical applications.

Collaboration


Dive into the Chandan Kumar-Sinha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuhong Cao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sooryanarayana Varambally

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Maher

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge