Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chanderdeep Tandon is active.

Publication


Featured researches published by Chanderdeep Tandon.


BioMed Research International | 2013

Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators

Kanu Priya Aggarwal; Shifa Narula; Monica Kakkar; Chanderdeep Tandon

Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a persons ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.


Journal of Ethnopharmacology | 2009

In vivo efficacy of Trachyspermum ammi anticalcifying protein in urolithiatic rat model.

Tanzeer Kaur; Rakesh K. Bijarnia; S. K. Singla; Chanderdeep Tandon

ETHNOPHARMACOLOGICAL RELEVANCE Many medicinal plants have been employed during ages to treat urinary stones though the rationale behind their use is not well established. Recently, we have successfully purified an anticalcifying protein from the seeds of Trachyspermum ammi (L.) Sprague ex Turril (Umbelliferae) using oxalate depletion assay and deciphered its inhibitory activity against calcium oxalate crystal growth. AIM In this report, the antilithiatic activity of Trachyspermum ammi anticalcifying protein (TAP) was studied in urolithiatic rat model. METHODOLOGY Urolithiasis was induced by exposure of 0.4% ethylene glycol (EG) and 1.0% ammonium chloride (NH(4)Cl) for 9 days. The efficacy of TAP was studied in another group given same dose of EG and NH(4)Cl in addition to 2mg/kg body weight of TAP. Further, we evaluated ability of TAP to inhibit the attachment of calcium oxalate (CaO(x)) crystal in kidney tissue and studied the consequences of CaO(x) adhesion on renal functioning and tissue integrity. RESULTS The antilithiatic potential of TAP was confirmed by its ability to maintain renal functioning, reduce renal injury and decrease crystal excretion in urine and retention in renal tissues. CONCLUSIONS Thus, the present investigation suggests the potential of TAP in preventing calcium oxalate deposition and forms the basis for the development of antilithiatic drug interventions against urolithiasis.


Food and Chemical Toxicology | 2008

Modulatory effects of N-acetylcysteine on hyperoxaluric manifestations in rat kidney

Rakesh K. Bijarnia; Tanzeer Kaur; Kanika Aggarwal; S. K. Singla; Chanderdeep Tandon

Hyperoxaluria is a condition where excessive oxalate is present in the urine. Many reports have documented free radical generation followed by hyperoxaluria as a consequence of which calcium oxalate deposition occurs in the kidney tissue. The present invivo study was designed to investigate the potential of N-acetylcysteine in modulating hyperoxaluric manifestation induced by sodium oxalate in the rat kidneys. Male wistar rats in one group were administered single dose of sodium oxalate (70mg/kg body weight) intraperitoneally to induce hyperoxaluric conditions and in the other group, rats were injected N-acetylcysteine (NAC) (200mg/kg body weight) intraperitoneally, half an hour after sodium oxalate dose. The treatment is for a period of 24h. N-acetylcysteine significantly reduced hyperoxaluria caused oxidative stress by reducing lipid peroxidation, restoring antioxidant enzymes activity in kidney tissue, followed by reduction in impairment of renal functioning. In addition, NAC administration reduced the number of calcium oxalate monohydrate (COM) crystals in the urine as observed under polarization microscope. Histological analysis depicted that NAC treatment decreased renal epithelial damage, inflammation and restored normal glomeruli morphology. Thus, it shows that use of an extraneous antioxidant may prove beneficial for combating the conditions of oxidative stress produced by hyperoxaluria.


Protein and Peptide Letters | 2012

A novel antilithiatic protein from Tribulus terrestris having cytoprotective potency.

Anshu Aggarwal; Simran Tandon; S. K. Singla; Chanderdeep Tandon

Adhesion of calcium oxalate (CaOx) crystals to kidney cells is a key event in kidney stones associated with marked hyperoxaluria. As the propensity of stone recurrence and persistent side effects are not altered by surgical techniques available, phytotherapeutic agents could be useful as an adjuvant therapy. The present study is aimed at examining the antilithiatic potency of the protein biomolecules of Tribulus terrestris, a plant which is a common constituent of herbal marketed preparations to treat urolithiasis. Various biochemical methods with mass spectrometry were used to purify and characterize the purified protein. The protective potency of the protein was tested on the oxalate induced injury on renal epithelial cell lines (NRK 52E). An antilithiatic protein having molecular weight of ~ 60kDa was purified. This purified protein showed similarities with Carotenoid cleavage dioxygenase 7 (CCD7) of Arabidopsis thaliana after matching peptide mass fingerprints in MASCOT search engine. An EF hand domain was identified in CCD7 by SCAN PROSITE. Presence of an EF hand domain, a characteristic feature of calcium binding proteins and a role in the synthesis of retinol which is transported by retinol binding protein, a protein found in kidney stone matrix; of CCD7 support the role of TTP as an antilithiatic protein. The protective potency of TTP on NRK 52E was quite comparable to the aqueous extract of cystone. Our findings suggest that this purified protein biomolecule from Tribulus terrestris could open new vista in medical management of urolithiasis.


Protein and Peptide Letters | 2009

Purification and Characterization of an Anticalcifying Protein from the Seeds of Trachyspermum ammi (L.)

Tanzeer Kaur; Rakesh K. Bijarnia; S. K. Singla; Chanderdeep Tandon

Till date various plants extract have been studied to reduce the incidence of urolithiasis but the identification of naturally occurring calcium oxalate (CaOx) inhibitory biomolecules from plants was hampered in past by limitation in identification method. The present study is aimed at examining the efficacy of Trachyspermum ammi on CaOx crystallization in vitro and further by combining conventional biochemical methods with recent advances in mass spectrometry, a novel calcium oxalate (CaOx) crystal growth inhibitor was purified from the seeds of Trachyspermum ammi. An anticalcifying protein from the seeds of Trachyspermum ammi was purified by three step purification scheme; ammonium sulphate fractionation, anion exchange chromatography and molecular sieve chromatography based on its ability to inhibit calcium oxalate crystallization in vitro. An anticalcifying protein having molecular weight 107 kDa and isolectric point 6.2 was isolated. Amino acid analysis of Trachyspermum ammi anticalcifying protein (TAP) showed abundant presence of acidic amino acids (Asp and Glu). Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry of TAP showed similarities with an unnamed protein product of Vitis vinifera (CAO23876) after matching peptide mass fingerprints in MASCOT search engine. Two EF hand domains were identified in unnamed protein product of Vitis vinifera (CAO23876) by SMART normal module. Due to a significant similarity of TAP with unnamed protein product of Vitis vinifera, presence of two EF hand domains in TAP was anticipated, signifying its calcium binding properties which is a feature of most kidney stone inhibitory proteins.


Journal of Plant Biochemistry and Biotechnology | 2016

Tracking dynamics of enzyme activities and their gene expression in Picrorhiza kurroa with respect to picroside accumulation

Varun Kumar; Kirti Shitiz; Rajinder Singh Chauhan; Hemant Sood; Chanderdeep Tandon

Picrosides, the terpenoids synthesized by Picrorhiza kurroa, have ample usage in medicine. Identification of the regulatory enzymes involved in picroside biosynthesis needs to be explored for improving the level of these secondary metabolites. Current efforts are based on the analysis of secondary metabolism in picroside biosynthesis but its interpretation is limited by the lack of information on the involvement of primary metabolic pathways. The present study investigated the connection of primary metabolic enzymes with the picrosides levels in P. kurroa. The results showed changes in the catalytic activities as well as in the gene expression profiles of hexokinase, pyruvate kinase, isocitrate dehydrogenase, malate dehydrogenase, and NADP+-malic enzyme in congruence with picroside-I content under different conditions of P. kurroa growth, which indicates the role of these enzymes in the accumulation of picrosides. The significant correlation coefficients (p < 0.05) observed between gene expression and enzyme activity underline the role of integrative studies for a better understanding of connecting links between metabolic pathways leading to picroside biosynthesis. This is apparently the first report on the involvement of glycolytic and TCA cycle enzymes in the accumulation of picrosides in P. kurroa.


International Braz J Urol | 2012

Cytoprotective role of the aqueous extract of Terminalia chebula on renal epithelial cells

S. Tayal; S. Duggal; P. Bandyopadhyay; A. Aggarwal; S. Tandon; Chanderdeep Tandon

PURPOSE Kidney stone is one of the most prevalent diseases worldwide. Calcium oxalate (CaOx) has been shown to be the main component of the majority of stones formed in the urinary system of the patients with urolithiasis. The present study evaluates the antilithiatic properties of Terminalia chebula commonly called as ″harad ″ which is often used in ayurveda to treat various urinary diseases including kidney stones. MATERIALS AND METHODS The antilithiatic activity of Terminalia chebula was investigated on nucleation and growth of the calcium oxalate crystals. The protective potency of the plant extract was also tested on oxalate induced cell injury of both NRK-52E and MDCK renal epithelial cells. RESULTS The percentage inhibition of CaOx nucleation was found 95.84 % at 25µg/mL of Terminalia chebula aqueous extract which remained almost constant with the increasing concentration of the plant extract; however, plant extract inhibited CaOx crystal growth in a dose dependent pattern. When MDCK and NRK-52E cells were injured by exposure to oxalate for 48 hours, the aqueous extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant extract, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. CONCLUSION Our study indicates that Terminalia chebula is a potential candidate for phytotherapy against urolithiasis as it not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role.


Clinica Chimica Acta | 2013

Novel antilithiatic cationic proteins from human calcium oxalate renal stone matrix identified by MALDI-TOF-MS endowed with cytoprotective potential: an insight into the molecular mechanism of urolithiasis.

Kanu Priya Aggarwal; Simran Tandon; Pradeep Kumar Naik; Shrawan Kumar Singh; Chanderdeep Tandon

BACKGROUND No substantial work has been conducted to date in context to cationic proteins with antilithiatic activity. We explored the antilithiatic cationic proteins present in human calcium oxalate (CaOx) stones and also examined their molecular interactions with calcium oxalate crystals in silico. METHODS Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to cation exchange chromatography followed by molecular-sieve chromatography. The effect of these purified cationic proteins was tested against CaOx nucleation and growth and on oxalate injured MDCK cells for their activity. Proteins were identified by MALDI-TOF MS. Molecular interaction studies with COM crystals in silico were also investigated. RESULTS Three antilithiatic cationic proteins were identified as histone-lysine N-methyltransferase, inward rectifier K channel and protein Wnt-2 (MW~53, ~44, and ~42 kDa respectively) by MALDI-TOF MS based on database search with MASCOT server. Further molecular modeling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSION We identified histone-lysine N-methyltransferase, inward rectifier K channel and protein Wnt-2 as novel antilithiatic proteins which play a vital role in the kidney function and have been associated with various kidney diseases.


The Scientific World Journal | 2014

Evaluation of the Cytotoxic Effects of CAM Therapies: An In Vitro Study in Normal Kidney Cell Lines

Shagun Arora; Chanderdeep Tandon; Simran Tandon

The purpose of this current study was to justify the incorporation of complementary and alternate medicine (CAM) in current cancer treatments. The major drawback of anticancer drugs is their nonselective killing, which ultimately leads to attrition of normal cells. Keeping this as the foundation of our study, we made an effort to compare the cytotoxicity associated with a known chemotherapeutic drug 5-Fluorouracil (5-FU), with certain CAM therapies previously reported to have anticancer activity. The parameters chosen for the study were based on antiproliferative and cytotoxic effects on normal, kidney epithelial cells (NRK-52E). The MTT assay, colony formation assay, DNA fragmentation, and differential staining using AO/EB, following treatment with either 5-FU or CAM therapies, were performed. The CAM therapies under study were various extracts of wheatgrass, roots of Achyranthes aspera (AA), mushroom extracts (Pleurotus ostreatus, Macrolepiota procera, and Auricularia polytricha), and a homeopathic drug, Ruta graveolens (Ruta). The results showed that treatment of normal cells with the CAM therapies led to minimum cell damage in comparison to 5-FU. This evidence-based study will lead to greater acceptance of alternative therapies against cancer.


International Braz J Urol | 2010

Effect of biomolecules from human renal matrix of calcium oxalate monohydrate (CaOx) stones on in vitro calcium phosphate crystallization

Priyadarshini Pathak; Shrawan Kumar Singh; Chanderdeep Tandon

PURPOSE Investigate the activity of high and low molecular weight biomolecules present in the matrix of human calcium oxalate (CaOx) stones not only on the initial mineral phase formation of calcium and phosphate (CaP) but also on its growth and demineralization of the preformed mineral phase. MATERIALS AND METHODS Surgically removed renal stones were analyzed by Fourier Transform Infra Red (FTIR) spectroscopy and only CaOx stones were extracted with 0.05M EGTA, 1 mM PMSF and 1% Β-mercaptoethanol. Renal CaOx stone extract was separated into > 10 kDa and < 10 kDa fractions by dialysis. Activity of both the fractions along with whole extract was studied on the three mineral phases of CaP assay system. RESULTS It was interesting to observe that both high and low molecular weight biomolecules extracted from human renal matrix of calcium oxalate (CaOx) stones exhibited different roles in the three mineral phases of CaP. Whole extract exhibited inhibitory activity in all the three assay systems; however, mixed (stimulatory and inhibitory) activity was exhibited by the > 10 kDa and < 10 kDa fractions. SDS-PAGE analysis showed bands of 66 kDa, 80 kDa, 42 kDa in whole EGTA extract lane and > 10 kDa fraction lane. CONCLUSION Both high and low molecular weight biomolecules extracted from human renal matrix of calcium oxalate (CaOx) stones have a significant influence on calcium and phosphate (CaP) crystallization.

Collaboration


Dive into the Chanderdeep Tandon's collaboration.

Top Co-Authors

Avatar

Simran Tandon

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Shrawan Kumar Singh

Post Graduate Institute of Medical Education and Research

View shared research outputs
Top Co-Authors

Avatar

Rakesh K. Bijarnia

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajinder Singh Chauhan

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Anshu Aggarwal

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Kanu Priya Aggarwal

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Pradeep Kumar Naik

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Shifa Narula

Amity Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Varun Kumar

Jaypee University of Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge