Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajinder Singh Chauhan is active.

Publication


Featured researches published by Rajinder Singh Chauhan.


Journal of Plant Physiology | 2011

Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species

Nidhi Gupta; Sunil K. Sharma; Jai C. Rana; Rajinder Singh Chauhan

Buckwheat is one of the field crops with the highest concentration of rutin, an important flavonoid of medicinal value. Two species of buckwheat, Fagopyrum esculentum and Fagopyrum tataricum, are the major sources of rutin. Seeds of latter contain 40-50× higher rutin compared to the former. The physiological and molecular bases of rutin content variation between Fagopyrum species are not known. The current study investigated the differences in rutin content in seeds and in other tissues and growth stages of two Fagopyrum species, and also correlated those differences with the expression of flavonoid pathway genes. The analysis of rutin content dynamics at different growth stages, S1-S9 (from seed germination to mature seed formation) of Fagopyrum species revealed that rutin content was higher during seedling stages of F. tataricum (3.5 to 4.6-fold) compared to F. esculentum and then increased exponentially from stages S3 to S6 (different leaf maturing stages and inflorescence) of F. esculentum, whereas it fluctuated in F. tataricum. The rutin content was highest in the inflorescence stage (S6) of both species, with a relatively higher biosynthesis and accumulation during post-flowering stages of F. tataricum compared to F. esculentum. The expression of flavonoid pathway genes, through qRT-PCR, in different growth stages vis-à-vis rutin content variation showed differential expression for four genes, PAL, CHS, CHI and FLS with the amounts of transcripts relatively higher in F. tataricum compared to F. esculentum, thereby, correlating these genes with the biosynthesis and accumulation of rutin. The expression of PAL was highest, 7.69 and 8.96-fold in Stages 2 (seedling stage) and 9 (fully developed seeds) of F. tataricum compared to F. esculentum, respectively. The expression of the CHS gene correlated with the rutin content because it was highest in the flowers (S6) and fully developed seeds (S9) of both Fagopyrum species, with relatively higher transcript amounts (2.13 and 3.19-fold, respectively) in F. tataricum (IC-329457) compared to F. esculentum (IC-540858). This study provides useful information on molecular and physiological dynamics of rutin biosynthesis and accumulation in Fagopyrum species and the correlation of expression of flavonoid biosynthesis genes with the rutin content can be useful in planning for genetic improvement.


Journal of Plant Biochemistry and Biotechnology | 2000

Identification of High Podophyllotoxin Producing Biotypes of Podophyllum hexandrum Royle from North-Western Himalaya

T. R. Sharma; B. M. Singh; N. R. Sharma; Rajinder Singh Chauhan

Fifty plants of Podophyllum hexandrum were collected from the interior ranges of western Himalaya of India from 8000 to 10000 ft above mean sea level for the analysis of podophyllotoxin content using HPLC. Two methods were used for the extraction of podophyllotoxin from powdered roots to standardize an extraction procedure for getting high yield of podophyllotoxin content. Extraction of podophyllotoxin was done efficiently in hot ethanol with continuous stirring. Highest podophyllotoxin content (7.84% on dry root wt basis) was obtained from P. hexandrum plants collected from Jalori Pass. In general, 24 per cent of the plant population from Jalori Pass contained higher amount of podophyllotoxin (4.0–7.84%). There was considerable reduction in the podophyllotoxin content in the roots of plants, planted at Palampur (4000 ft amsl) for one year. Embryogenic callus cultures obtained from root explants of P. hexandrum yielded 0.393% podophyllotoxin on dry wt basis.


PLOS ONE | 2013

Growth Inhibition and Apoptosis Induction by (+)-Cyanidan-3-ol in Hepatocellular Carcinoma

Jitender Monga; Saurabh Pandit; Rajinder Singh Chauhan; Chetan Singh Chauhan; Shailender Singh Chauhan

The objective of this study was to evaluate the cytotoxicity of (+)-cyanidan-3-ol (CD-3) in human hepatocellular carcinoma cell line (HepG2) and chemopreventive potential against hepatocellular carcinoma (HCC) in Balb/c mice. The HepG2 cell line was treated with CD-3 at various concentrations and the proliferation of the HepG2 cells was measure by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT), sulforhodamine B (SRB) and lactate dehydrogenase (LDH) assays. Cell apoptosis was detected by Hoechst 33258 (HO), Acridine orange/ethylene dibromide (AO/EB) staining, DNA fragmentation analysis and the apoptosis rate was detected by flow cytometry. The HCC tumor model was established in mice by injecting N-nitrosodiethylamine/carbon tetrachloride (NDEA/CCl4) and the effect of CD-3 on tumor growth in-vivo was studied. The levels of liver injury markers, tumor markers, and oxidative stress were measured. The expression levels of apoptosis-related genes in in-vitro and in vivo models were determined by RT-PCR and ELISA. The CD-3 induced cell death was considered to be apoptotic by observing the typical apoptotic morphological changes under fluorescent microscopy and DNA fragmentation analysis. Annexin V/PI assay demonstrated that apoptosis increased with increase in the concentration of CD-3. The expression levels of apoptosis-related genes that belong to bcl-2 and caspase family were increased and AP-1 and NF-κB activities were significantly suppressed by CD-3. Immunohistochemistry data revealed less localization of p53, p65 and c-jun in CD-3 treated tumors as compared to localization in NDEA/CCl4 treated tumors. Taken together, our data demonstrated that CD-3 could significantly inhibit the proliferation of HepG2 cells in-vitro and suppress HCC tumor growth in-vivo by apoptosis induction.


BMC Bioinformatics | 2013

Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions

Varun Jaiswal; Sree Krishna Chanumolu; Ankit Gupta; Rajinder Singh Chauhan; Chittaranjan Rout

BackgroundSubunit vaccines based on recombinant proteins have been effective in preventing infectious diseases and are expected to meet the demands of future vaccine development. Computational approach, especially reverse vaccinology (RV) method has enormous potential for identification of protein vaccine candidates (PVCs) from a proteome. The existing protective antigen prediction software and web servers have low prediction accuracy leading to limited applications for vaccine development. Besides machine learning techniques, those software and web servers have considered only protein’s adhesin-likeliness as criterion for identification of PVCs. Several non-adhesin functional classes of proteins involved in host-pathogen interactions and pathogenesis are known to provide protection against bacterial infections. Therefore, knowledge of bacterial pathogenesis has potential to identify PVCs.ResultsA web server, Jenner-Predict, has been developed for prediction of PVCs from proteomes of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis by considering known functional domains from protein classes such as adhesin, virulence, invasin, porin, flagellin, colonization, toxin, choline-binding, penicillin-binding, transferring-binding, fibronectin-binding and solute-binding. It predicts non-cytosolic proteins containing above domains as PVCs. It also provides vaccine potential of PVCs in terms of their possible immunogenicity by comparing with experimentally known IEDB epitopes, absence of autoimmunity and conservation in different strains. Predicted PVCs are prioritized so that only few prospective PVCs could be validated experimentally. The performance of web server was evaluated against known protective antigens from diverse classes of bacteria reported in Protegen database and datasets used for VaxiJen server development. The web server efficiently predicted known vaccine candidates reported from Streptococcus pneumoniae and Escherichia coli proteomes. The Jenner-Predict server outperformed NERVE, Vaxign and VaxiJen methods. It has sensitivity of 0.774 and 0.711 for Protegen and VaxiJen dataset, respectively while specificity of 0.940 has been obtained for the latter dataset.ConclusionsBetter prediction accuracy of Jenner-Predict web server signifies that domains involved in host-pathogen interactions and pathogenesis are better criteria for prediction of PVCs. The web server has successfully predicted maximum known PVCs belonging to different functional classes. Jenner-Predict server is freely accessible at http://117.211.115.67/vaccine/home.html


Phytochemical Analysis | 2013

A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa.

Varun Kumar; Hemant Sood; Rajinder Singh Chauhan

INTRODUCTION Picrorhiza kurroa Royle ex Benth is an important medicinal herb used in the preparation of several herbal drug formulations due to the presence of picroside-I (P-I) and picroside-II (P-II) along with other iridoid-glucosides derivatives. OBJECTIVE The endangered status of P. kurroa coupled with lack of information on biosynthesis of P-I and P-II necessitate deciphering the biosynthetic pathway for picrosides. METHODS LC with electrospray ionisation (ESI) and quadrupole time of flight combined with MS/MS was used to detect intermediates and assemble the picrosides biosynthetic pathway in P. kurroa. RESULTS The presence of catalpol and aucubin, the major backbone structures of picrosides, along with intermediate metabolites boschnaloside, bartsioside and mussaenosidic acid, was confirmed in ESI negative mode with pseudomolecular ion peaks, that is, m/z 361, m/z 343, m/z 345, m/z 329 and m/z 375 ions and their fragmentation patterns. CONCLUSION The picrosides biosynthetic pathway is expected to provide a reliable platform towards understanding the molecular components (genes/enzymes) of P-I and P-II biosynthesis in P. kurroa for their eventual utilisation in various applications.


Comparative and Functional Genomics | 2012

In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

Arti Sharma; Rajinder Singh Chauhan

Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.


Planta | 2015

Erratum to: Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa.

Ira Vashisht; Prashant Mishra; Tarun Pal; Sreekrishna Chanumolu; Tiratha Raj Singh; Rajinder Singh Chauhan

This study is the first endeavor on mining of miRNAs and analyzing their involvement in development and secondary metabolism of an endangered medicinal herb Picrorhiza kurroa (P. kurroa ). miRNAs are ubiquitous non-coding RNA species that target complementary sequences of mRNA and result in either translational repression or target degradation in eukaryotes. The role of miRNAs has not been investigated in P. kurroa which is a medicinal herb of industrial value due to the presence of secondary metabolites, picroside-I and picroside-II. Computational identification of miRNAs was done in 6 transcriptomes of P. kurroa generated from root, shoot, and stolon organs varying for growth, development, and culture conditions. All available plant miRNA entries were retrieved from miRBase and used as backend datasets to computationally identify conserved miRNAs in transcriptome data sets. Total 18 conserved miRNAs were detected in P. kurroa followed by target prediction and functional annotation which suggested their possible role in controlling various biological processes. Validation of miRNA and expression analysis by qRT-PCR and 5′ RACE revealed that miRNA-4995 has a regulatory role in terpenoid biosynthesis ultimately affecting the production of picroside-I. miR-5532 and miR-5368 had negligible expression in field-grown samples as compared to in vitro-cultured samples suggesting their role in regulating P. kurroa growth in culture conditions. The study has thus identified novel functions for existing miRNAs which can be further validated for their potential regulatory role.


Journal of Plant Biochemistry and Biotechnology | 2016

Tracking dynamics of enzyme activities and their gene expression in Picrorhiza kurroa with respect to picroside accumulation

Varun Kumar; Kirti Shitiz; Rajinder Singh Chauhan; Hemant Sood; Chanderdeep Tandon

Picrosides, the terpenoids synthesized by Picrorhiza kurroa, have ample usage in medicine. Identification of the regulatory enzymes involved in picroside biosynthesis needs to be explored for improving the level of these secondary metabolites. Current efforts are based on the analysis of secondary metabolism in picroside biosynthesis but its interpretation is limited by the lack of information on the involvement of primary metabolic pathways. The present study investigated the connection of primary metabolic enzymes with the picrosides levels in P. kurroa. The results showed changes in the catalytic activities as well as in the gene expression profiles of hexokinase, pyruvate kinase, isocitrate dehydrogenase, malate dehydrogenase, and NADP+-malic enzyme in congruence with picroside-I content under different conditions of P. kurroa growth, which indicates the role of these enzymes in the accumulation of picrosides. The significant correlation coefficients (p < 0.05) observed between gene expression and enzyme activity underline the role of integrative studies for a better understanding of connecting links between metabolic pathways leading to picroside biosynthesis. This is apparently the first report on the involvement of glycolytic and TCA cycle enzymes in the accumulation of picrosides in P. kurroa.


PLOS ONE | 2012

UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.

Sree Krishna Chanumolu; Chittaranjan Rout; Rajinder Singh Chauhan

Background Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. Methods A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific proteins critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. Results The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. Conclusions/Significance UniDrug-Target is expected to accelerate pathogen-specific drug targets identification which will increase their success and durability as drugs developed against them have less chance to develop resistances and adverse impact on environment. The server is freely available at http://117.211.115.67/UDT/main.html. The standalone application (source codes) is available at http://www.bioinformatics.org/ftp/pub/bioinfojuit/UDT.rar.


Phytochemistry | 2014

Multiple genes of mevalonate and non-mevalonate pathways contribute to high aconites content in an endangered medicinal herb, Aconitum heterophyllum Wall.

Nikhil Malhotra; Varun Kumar; Hemant Sood; Tiratha Raj Singh; Rajinder Singh Chauhan

Aconitum heterophyllum Wall, popularly known as Atis or Patis, is an important medicinal herb of North-Western and Eastern Himalayas. No information exists on molecular aspects of aconites biosynthesis, including atisine- the major chemical constituent of A. heterophyllum. Atisine content ranged from 0.14% to 0.37% and total alkaloids (aconites) from 0.20% to 2.49% among 14 accessions of A. heterophyllum. Two accessions contained the highest atisine content with 0.30% and 0.37% as well as the highest alkaloids content with 2.22% and 2.49%, respectively. No atisine was detected in leaves and shoots of A. heterophyllum, thereby, suggesting that the biosynthesis and accumulation of aconite alkaloids occur mainly in roots. Quantitative expression analysis of 15 genes of MVA/MEP pathways in roots versus shoots, differing for atisine content (0-2.2 folds) showed 11-100 folds increase in transcript amounts of 4 genes of MVA pathway; HMGS, HMGR, PMK, IPPI, and 4 genes of MEP pathway; DXPS, ISPD, HDS, GDPS, respectively. The overall expression of 8 genes decreased to 5-12 folds after comparative expression analysis between roots of high (0.37%) versus low (0.14%) atisine content accessions, but their relative transcript amounts remained higher in high content accessions, thereby implying their role in atisine biosynthesis and accumulation. PCA analysis revealed a positive correlation between MVA/MEP pathways genes and alkaloids content. The current study provides first report wherein partial sequences of 15 genes of MVA/MEP pathways have been cloned and studied for their possible role in aconites biosynthesis. The outcome of study has potential applications in the genetic improvement of A. heterophyllum.

Collaboration


Dive into the Rajinder Singh Chauhan's collaboration.

Top Co-Authors

Avatar

Hemant Sood

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Varun Kumar

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Tarun Pal

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Varun Jaiswal

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Kirti Shitiz

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Tiratha Raj Singh

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Neha Sharma

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Chanderdeep Tandon

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Pawan Kumar

Maharishi Markandeshwar University

View shared research outputs
Top Co-Authors

Avatar

Sree Krishna Chanumolu

Jaypee University of Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge