Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chanel E. Smart is active.

Publication


Featured researches published by Chanel E. Smart.


Molecular Cancer Therapeutics | 2011

ORAI1-Mediated Calcium Influx in Lactation and in Breast Cancer

D. McAndrew; Desma Grice; Amelia A. Peters; Felicity M. Davis; Teneale A. Stewart; Michelle Rice; Chanel E. Smart; Melissa A. Brown; Paraic A. Kenny; Sarah J. Roberts-Thomson; Gregory R. Monteith

The entry of calcium into the mammary epithelial cell from the maternal plasma (i.e., calcium influx mechanisms) during lactation is poorly understood. As alterations in calcium channels and pumps are a key feature of some cancers, including breast cancer, understanding these calcium influx pathways may have significance beyond mammary biology. We show that the store-operated calcium influx protein, Orai1, is increased during lactation whereas the Orai1 activator Stim1, but not Stim2, is downregulated. Stim2 siRNA reduced basal calcium levels in a lactation model. Our results suggest that calcium influx is remodeled in mammary epithelial cells during lactation, with calcium influx increased through Orai1, activated by Stim2. Breast cancer cell lines had increased levels of ORAI1. ORAI1 siRNA in breast cancer cells reduced store-operated calcium entry and remodeled the calcium influx associated with invasive stimuli. Analysis of microarray data from 295 breast cancers showed that the transcriptional breast cancer subtype with the poorest prognosis (basal) was associated with an altered relationship between the ORAI1 regulators STIM1 and STIM2, and that women with breast cancers with STIM1high/STIM2low tumors had a significantly poorer prognosis. Our studies show that during lactation there is a remodeling in the nature of calcium influx and that alteration in the ORAI1 influx pathway may be a feature of some breast cancers, particularly those with the poorest prognosis. Our studies suggest that this pathway may be a novel therapeutic target for breast cancer treatment in these women. Mol Cancer Ther; 10(3); 448–60. ©2011 AACR.


Carcinogenesis | 2011

Breast cancer stem cells: Treatment resistance and therapeutic opportunities

Fares Al-Ejeh; Chanel E. Smart; Brian J. Morrison; Georgia Chenevix-Trench; J. Alejandro Lopez; Sunil R. Lakhani; Michael P. Brown; Kum Kum Khanna

The clinical and pathologic heterogeneity of human breast cancer has long been recognized. Now, molecular profiling has enriched our understanding of breast cancer heterogeneity and yielded new prognostic and predictive information. Despite recent therapeutic advances, including the HER2-specific agent, trastuzumab, locoregional and systemic disease recurrence remain an ever-present threat to the health and well being of breast cancer survivors. By definition, disease recurrence originates from residual treatment-resistant cells, which regenerate at least the initial breast cancer phenotype. The discovery of the normal breast stem cell has re-ignited interest in the identity and properties of breast cancer stem-like cells and the relationship of these cells to the repopulating ability of treatment-resistant cells. The cancer stem cell model of breast cancer development contrasts with the clonal evolution model, whereas the mixed model draws on features of both. Although the origin and identity of breast cancer stem-like cells is contentious, treatment-resistant cells survive and propagate only because aberrant and potentially druggable signaling pathways are recruited. As a means to increase the rates of breast cancer cure, several approaches to specific targeting of the treatment-resistant cell population exist and include methods for addressing the problem of radioresistance in particular.


Breast Cancer Research | 2010

HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer

Leonard Da Silva; Peter T. Simpson; Chanel E. Smart; Sibylle Cocciardi; Nic Waddell; Annette Lane; Brian J. Morrison; Ana Cristina Vargas; Sue Healey; Jonathan Beesley; Pria Pakkiri; Suzanne Parry; Nyoman D. Kurniawan; Lynne Reid; Patricia Keith; Paulo Faria; Emílio Marcelo Pereira; Alena Skálová; Michael Bilous; Rosemary L. Balleine; Hongdo Do; Alexander Dobrovic; Stephen B. Fox; Marcello Franco; Brent A. Reynolds; Kum Kum Khanna; Margaret C. Cummings; Georgia Chenevix-Trench; Sunil R. Lakhani

IntroductionMetastases to the brain from breast cancer have a high mortality, and basal-like breast cancers have a propensity for brain metastases. However, the mechanisms that allow cells to colonize the brain are unclear.MethodsWe used morphology, immunohistochemistry, gene expression and somatic mutation profiling to analyze 39 matched pairs of primary breast cancers and brain metastases, 22 unmatched brain metastases of breast cancer, 11 non-breast brain metastases and 6 autopsy cases of patients with breast cancer metastases to multiple sites, including the brain.ResultsMost brain metastases were triple negative and basal-like. The brain metastases over-expressed one or more members of the HER family and in particular HER3 was significantly over-expressed relative to matched primary tumors. Brain metastases from breast and other primary sites, and metastases to multiple organs in the autopsied cases, also contained somatic mutations in EGFR, HRAS, KRAS, NRAS or PIK3CA. This paralleled the frequent activation of AKT and MAPK pathways. In particular, activation of the MAPK pathway was increased in the brain metastases compared to the primary tumors.ConclusionsDeregulated HER family receptors, particularly HER3, and their downstream pathways are implicated in colonization of brain metastasis. The need for HER family receptors to dimerize for activation suggests that tumors may be susceptible to combinations of anti-HER family inhibitors, and may even be effective in the absence of HER2 amplification (that is, in triple negative/basal cancers). However, the presence of activating mutations in PIK3CA, HRAS, KRAS and NRAS suggests the necessity for also specifically targeting downstream molecules.


Journal of Biological Chemistry | 2000

The Proliferative and Migratory Activities of Breast Cancer Cells Can Be Differentially Regulated by Heparan Sulfates

Victor Nurcombe; Chanel E. Smart; Hiram Chipperfield; Simon M. Cool; Bénoni Boilly; Hubert Hondermarck

To explore how heparan sulfate (HS) controls the responsiveness of the breast cancer cell lines MCF-7 and MDA-MB-231 to fibroblast growth factors (FGFs), we have exposed them to HS preparations known to have specificity for FGF-1 (HS glycosaminoglycan (HSGAG A)) or FGF-2 (HSGAGB). Proliferation assays confirmed that MCF-7 cells were highly responsive to FGF-2 complexed with GAGB, whereas migration assays indicated that FGF-1/HSGAGA combinations were stimulatory for the highly invasive MDA-MB-231 cells. Quantitative polymerase chain reaction for the levels of FGF receptor (FGFR) isoforms revealed that MCF-7 cells have greater levels of FGFR1 and that MDA-MB-231 cells have greater relative levels of FGFR2. Cross-linking demonstrated that FGF-2/HSGAGB primarily activated FGFR1, which in turn up-regulated the activity of mitogen-activated protein kinase; in contrast, FGF-1/HSGAGA led to the phosphorylation of equal proportions of both FGFR1 and FGFR2, which in turn led to the up-regulation of Src and p125FAK. MDA-MB-231 cells were particularly responsive to vitronectin substrates in the presence of FGF-1/HSGAGA, and blocking antibodies established that they used the αvβ3 integrin to bind to it. These results suggest that the clustering of particular FGFR configurations on breast cancer cells induced by different HS chains leads to distinct phenotypic behaviors.


Biochemical and Biophysical Research Communications | 2008

Localization of plasma membrane and secretory calcium pumps in the mammary gland

Helen M. Faddy; Chanel E. Smart; Ren Xu; Genee Y. Lee; Paraic A. Kenny; Mingye Feng; Rajini Rao; Melissa A. Brown; Mina J. Bissell; Sarah J. Roberts-Thomson; Gregory R. Monteith

Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely via the secretory pathway. However, recent studies suggest that a plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during development. SPCA2 levels increased over 35-fold during lactation with expression localized to luminal secretory cells, while SPCA1 increased only a modest 2-fold and was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1. Our studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation and indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.


PLOS ONE | 2014

Emerging Role of Long Non-Coding RNA SOX2OT in SOX2 Regulation in Breast Cancer

Marjan E. Askarian-Amiri; Vahid Seyfoddin; Chanel E. Smart; Jingli Wang; Ji Eun Kim; Herah Hansji; Bruce C. Baguley; Graeme J. Finlay; Euphemia Leung

The transcription factor SOX2 is essential for maintaining pluripotency in a variety of stem cells. It has important functions during embryonic development, is involved in cancer stem cell maintenance, and is often deregulated in cancer. The mechanism of SOX2 regulation has yet to be clarified, but the SOX2 gene lies in an intron of a long multi-exon non-coding RNA called SOX2 overlapping transcript (SOX2OT). Here, we show that the expression of SOX2 and SOX2OT is concordant in breast cancer, differentially expressed in estrogen receptor positive and negative breast cancer samples and that both are up-regulated in suspension culture conditions that favor growth of stem cell phenotypes. Importantly, ectopic expression of SOX2OT led to an almost 20-fold increase in SOX2 expression, together with a reduced proliferation and increased breast cancer cell anchorage-independent growth. We propose that SOX2OT plays a key role in the induction and/or maintenance of SOX2 expression in breast cancer.


Genes, Chromosomes and Cancer | 2006

Disruption of BRCA1 function results in telomere lengthening and increased anaphase bridge formation in immortalized cell lines

Juliet D. French; Jasmyn A. Dunn; Chanel E. Smart; N. W. Manning; Melissa A. Brown

BRCA1 is a tumor suppressor that functions in controlling cell growth and maintaining genomic stability. BRCA1 has also been implicated in telomere maintenance through its ability to regulate the transcription of hTERT, the catalytic subunit of telomerase, resulting in telomere shortening, and to colocalize with the telomere‐binding protein TRF1. The high incidence of nonreciprocal translocations in tumors arising from BRCA1 mutation carriers and Brca1‐null mice also raises the possibility that BRCA1 plays a role in telomere protection. To date, however, the consequences for telomere status of disrupting BRCA1 have not been reported. To examine the role of BRCA1 in telomere regulation, we have expressed a dominant‐negative mutant of BRCA1 (trBRCA1), known to disrupt multiple functions of BRCA1, in telomerase‐positive mammary epithelial cells (SVCT) and telomerase‐negative ALT cells (GM847). In SVCT cells, expression of trBRCA1 resulted in an increased incidence of anaphase bridges and in an increase in telomere length, but no change in telomerase activity. In GM847 cells, trBRCA1 also increased anaphase bridge formation but did not induce any change in telomere length. BRCA1 colocalized with TRF2 in telomerase‐positive cells and with a small subset of ALT‐associated PML bodies (APBs) in ALT cells. Together, these results raise the possibility that BRCA1 could play a role in telomere protection and suggest a potential mechanism for one of the phenotypes of BRCA1‐deficient cells.


Cell and Tissue Research | 2005

Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix

Nicholas E. Timmins; F. J. Harding; Chanel E. Smart; Melissa A. Brown; Lars K. Nielsen

During puberty, pregnancy, lactation and post-lactation, breast tissue undergoes extensive remodelling and the disruption of these events can lead to cancer. In vitro studies of mammary tissue and its malignant transformation regularly employ mammary epithelial cells cultivated on matrigel or floating collagen rafts. In these cultures, mammary epithelial cells assemble into three-dimensional structures resembling in vivo acini. We present a novel technique for generating functional mammary constructs without the use of matrix substitutes.


FEBS Letters | 2000

The mitogenic signaling pathway for fibroblast growth factor-2 involves the tyrosine phosphorylation of cyclin D2 in MCF-7 human breast cancer cells.

Anne-Sophie Vercoutter-Edouart; Jérôme Lemoine; Chanel E. Smart; Victor Nurcombe; Bénoni Boilly; Jean-Philippe Peyrat; Hubert Hondermarck

Fibroblast growth factor‐2 (FGF‐2) is mitogenic for the human breast cancer cell line MCF‐7; here we investigate some of the signaling pathways subserving this activity. FGF‐2 stimulation of MCF‐7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate‐2, the protooncogene product Src and the mitogen‐activated protein kinase (MAP kinase) cascade. A major increase in the tyrosine phosphorylation of a 30‐kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti‐phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF‐2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF‐2‐induced phosphorylation of cyclin D2 whereas MAP kinase activity is not. Thus, tyrosine phosphorylation of cyclin D2 may be a key regulatory target for FGF‐2 signaling.


PLOS ONE | 2013

In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

Chanel E. Smart; Brian J. Morrison; Jodi M. Saunus; Ana Cristina Vargas; Patricia Keith; Lynne Reid; Leesa F. Wockner; Marjan E. Askarian Amiri; Debina Sarkar; Peter T. Simpson; Catherine Clarke; Christopher W. Schmidt; Brent A. Reynolds; Sunil R. Lakhani; J. Alejandro Lopez

Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity.

Collaboration


Dive into the Chanel E. Smart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jodi M. Saunus

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Lynne Reid

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgia Chenevix-Trench

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge