Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chang-Deng Hu is active.

Publication


Featured researches published by Chang-Deng Hu.


Molecular Cell | 2002

Visualization of Interactions among bZIP and Rel Family Proteins in Living Cells Using Bimolecular Fluorescence Complementation

Chang-Deng Hu; Yurii Chinenov; Tom K. Kerppola

Networks of protein interactions coordinate cellular functions. We describe a bimolecular fluorescence complementation (BiFC) assay for determination of the locations of protein interactions in living cells. This approach is based on complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are brought together by interactions between proteins fused to each fragment. BiFC analysis was used to investigate interactions among bZIP and Rel family transcription factors. Regions outside the bZIP domains determined the locations of bZIP protein interactions. The subcellular sites of protein interactions were regulated by signaling. Cross-family interactions between bZIP and Rel proteins affected their subcellular localization and modulated transcription activation. These results attest to the general applicability of the BiFC assay for studies of protein interactions.


Nature Biotechnology | 2003

Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis

Chang-Deng Hu; Tom K. Kerppola

The specificity of biological regulatory mechanisms relies on selective interactions between different proteins in different cell types and in response to different extracellular signals. We describe a bimolecular fluorescence complementation (BiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. This approach is based on complementation between fragments of fluorescent proteins with different spectral characteristics. We have identified 12 bimolecular fluorescent complexes that correspond to 7 different spectral classes. Bimolecular complex formation between fragments of different fluorescent proteins did not differentially affect the dimerization efficiency of the bZIP domains of Fos and Jun or the subcellular sites of interactions between these domains. Multicolor BiFC enables visualization of interactions between different proteins in the same cell and comparison of the efficiencies of complex formation with alternative interaction partners.


BioTechniques | 2006

Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions.

Y. John Shyu; Han Liu; Xuehong Deng; Chang-Deng Hu

Protein-protein interactions play a pivotal role in coordinating many cellular processes. Determination of subcellular localization of interacting proteins and visualization of dynamic interactions in living cells are crucial to elucidate cellular functions of proteins. Using fluorescent proteins, we previously developed a bimolecular fluorescence complementation (BiFC) assay and a multicolor BiFC assay to visualize protein-protein interactions in living cells. However, the sensitivity of chromophore maturation of enhanced yellow fluorescent protein (YFP) to higher temperatures requires preincubation at lower temperatures prior to visualizing the BiFC signal. This could potentially limit their applications for the study of many signaling molecules. Here we report the identification of new fluorescent protein fragments derived from Venus and Cerulean for BiFC and multicolor BiFC assays under physiological culture conditions. More importantly, the newly identified combinations exhibit a 13-fold higher BiFC efficiency than originally identified fragments derived from YFP. Furthermore, the use of new combinations reduces the amount of plasmid required for transfection and shortens the incubation time, leading to a 2-fold increase in specific BiFC signals. These newly identified fluorescent protein fragments will facilitate the study of protein-protein interactions in living cells and whole animals under physiological conditions.


Journal of Biological Chemistry | 2012

Autophagosomal Membrane Serves as Platform for Intracellular Death-inducing Signaling Complex (iDISC)-mediated Caspase-8 Activation and Apoptosis

Megan M. Young; Yoshinori Takahashi; Osman Khan; Sungman Park; Tsukasa Hori; Jong K. Yun; Arun K. Sharma; Shantu Amin; Chang-Deng Hu; Jianke Zhang; Mark Kester; Hong-Gang Wang

Background: It remains a matter of debate whether autophagy contributes to apoptosis. Results: Atg5 and p62 are required for an intracellular death-inducing signaling complex (iDISC) formation on autophagosomal membranes for caspase-8 self-processing. Conclusion: Autophagosome serves as a platform for the intracellular activation of caspase-8. Significance: Induction of iDISC formation may shift cytoprotective autophagy to apoptosis for more effective cancer therapies. Autophagy and apoptosis are two evolutionarily conserved processes that regulate cell fate in response to cytotoxic stress. However, the functional relationship between these two processes remains far from clear. Here, we demonstrate an autophagy-dependent mechanism of caspase-8 activation and initiation of the apoptotic cascade in response to SKI-I, a pan-sphingosine kinase inhibitor, and bortezomib, a proteasome inhibitor. Autophagy is induced concomitantly with caspase-8 activation, which is responsible for initiation of the caspase cascade and the mitochondrial amplification loop that is required for full execution of apoptosis. Inhibition of autophagosome formation by depletion of Atg5 or Atg3 results in a marked suppression of caspase-8 activation and apoptosis. Although caspase-8 self-association depends on p62/SQSTM1, its self-processing requires the autophagosomal membrane. Caspase-8 forms a complex with Atg5 and colocalizes with LC3 and p62. Moreover, FADD, an adaptor protein for caspase-8 activation, associates with Atg5 on Atg16L- and LC3-positive autophagosomal membranes and loss of FADD suppresses cell death. Taken together, these results indicate that the autophagosomal membrane serves as a platform for an intracellular death-inducing signaling complex (iDISC) that recruits self-associated caspase-8 to initiate the caspase-8/-3 cascade.


BioTechniques | 2012

Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives.

Yutaka Kodama; Chang-Deng Hu

Over the past decade, bimolecular fluorescence complementation (BiFC) has emerged as a key technique to visualize protein-protein interactions in a variety of model organisms. The BiFC assay is based on reconstitution of an intact fluorescent protein when two complementary non-fluorescent fragments are brought together by a pair of interacting proteins. While the originally reported BiFC method has enabled the study of many protein-protein interactions, increasing demands to visualize protein-protein interactions under various physiological conditions have not only prompted a series of recent BiFC technology improvements, but also stimulated interest in developing completely new approaches. Here we review current BiFC technology, focusing on the development and improvement of BiFC systems, the understanding of split sites in fluorescent proteins, and enhancements in the signal-to-noise ratio. In addition, we provide perspectives on possible future improvements of the technique.


Molecular and Cellular Biology | 2004

Visualization of Myc/Max/Mad Family Dimers and the Competition for Dimerization in Living Cells

Asya Grinberg; Chang-Deng Hu; Tom K. Kerppola

ABSTRACT Myc and Mad family proteins play opposing roles in the control of cell growth and proliferation. We have visualized the subcellular locations of complexes formed by Myc/Max/Mad family proteins using bimolecular fluorescence complementation (BiFC) analysis. Max was recruited to different subnuclear locations by interactions with Myc versus Mad family members. Complexes formed by Max with Mxi1, Mad3, or Mad4 were enriched in nuclear foci, whereas complexes formed with Myc were more uniformly distributed in the nucleoplasm. Mad4 was localized to the cytoplasm when it was expressed separately, and Mad4 was recruited to the nucleus through dimerization with Max. The cytoplasmic localization of Mad4 was determined by a CRM1-dependent nuclear export signal located near the amino terminus. We compared the relative efficiencies of complex formation among Myc, Max, and Mad family proteins in living cells using multicolor BiFC analysis. Max formed heterodimers with the basic helix-loop-helix leucine zipper (bHLHZIP) domain of Myc (bMyc) more efficiently than it formed homodimers. Replacement of two amino acid residues in the leucine zipper of Max reversed the relative efficiencies of homo- and heterodimerization in cells. Surprisingly, Mad3 formed complexes with Max less efficiently than bMyc, whereas Mad4 formed complexes with Max more efficiently than bMyc. The distinct subcellular locations and the differences between the efficiencies of dimerization with Max indicate that Mad3 and Mad4 are likely to modulate transcription activation by Myc at least in part through distinct mechanisms.


BioTechniques | 2010

An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio

Yutaka Kodama; Chang-Deng Hu

Protein-protein interactions (PPIs) play crucial roles in various biological processes. Among biochemical, genetic, and imaging approaches that have been used for the study of PPIs, visualization of PPIs in living cells is the key to understanding their cellular functions. The bimolecular fluorescence complementation (BiFC) assay represents one of these imaging tools for direct visualization of PPIs in living cells. The BiFC assay is based on the structural complementation of two nonfluorescent N- and C-terminal fragments of a fluorescent protein when they are fused to a pair of interacting proteins. Although over 10 different fluorescent proteins have been used for BiFC assays, the two nonfluorescent fragments from all of these fluorescent proteins can spontaneously self-assemble, which contributes to background fluorescence and decreases the signal-to-noise (S/N) ratio in the BiFC assay. Here we report the identification of a mutation, I152L, that can specifically reduce self-assembly and decrease background fluorescence in a Venus-based BiFC system. This mutation allows a 4-fold increase in the S/N ratio of the BiFC assay in living cells. This improved Venus-based BiFC system will facilitate PPI studies in various biological research fields.


Journal of Biological Chemistry | 1998

IDENTIFICATION OF PLC210, A CAENORHABDITIS ELEGANS PHOSPHOLIPASE C, AS A PUTATIVE EFFECTOR OF RAS

Mitsushige Shibatohge; Ken-ichi Kariya; Yanhong Liao; Chang-Deng Hu; Yasuhiro Watari; Masahiro Goshima; Fumi Shima; Tohru Kataoka

Mammalian Ras proteins regulate multiple effectors including Raf, Ral guanine nucleotide dissociation stimulator (RalGDS), and phosphoinositide 3-kinase. In the nematodeCaenorhabditis elegans, LIN-45 Raf has been identified by genetic analyses as an effector of LET-60 Ras. To search for other effectors in C. elegans, we performed a yeast two-hybrid screening for LET-60-binding proteins. The screening identified two cDNA clones encoding a phosphoinositide-specific phospholipase C (PI-PLC) with a predicted molecular mass of 210 kDa, designated PLC210. PLC210 possesses two additional functional domains unseen in any known PI-PLCs. One is the C-terminal Ras-associating domain bearing a structural homology with those of RalGDS and AF-6. This domain, which could be narrowed down to 100 amino acid residues, associated in vitro with human Ha-Ras in a GTP-dependent manner and competed with yeast adenylyl cyclase for binding Ha-Ras. The binding was abolished by specific mutations within the effector region of Ha-Ras. The other functional domain is the N-terminal CDC25-like domain, which possesses a structural homology to guanine nucleotide exchange proteins for Ras. These results strongly suggest that PLC210 belongs to a novel class of PI-PLC, which is a putative effector of Ras.


The EMBO Journal | 2006

Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization

Han Liu; Xuehong Deng; Y. John Shyu; Jian Jian Li; Elizabeth J. Taparowsky; Chang-Deng Hu

ATF2 and c‐Jun are key components of activating protein‐1 and function as homodimers or heterodimers. c‐Jun–ATF2 heterodimers activate the expression of many target genes, including c‐jun, in response to a variety of cellular and environmental signals. Although it has been believed that c‐Jun and ATF2 are constitutively localized in the nucleus, where they are phosphorylated and activated by mitogen‐activated protein kinases, the molecular mechanisms underlying the regulation of their transcriptional activities remain to be defined. Here we show that ATF2 possesses a nuclear export signal in its leucine zipper region and two nuclear localization signals in its basic region, resulting in continuous shuttling between the cytoplasm and the nucleus. Dimerization with c‐Jun in the nucleus prevents the export of ATF2 and is essential for the transcriptional activation of the c‐jun promoter. Importantly, c‐Jun‐dependent nuclear localization of ATF2 occurs during retinoic acid‐induced differentiation and UV‐induced cell death in F9 cells. Together, these findings demonstrate that ATF2 and c‐Jun mutually regulate each other by altering the dynamics of subcellular localization and by positively impacting transcriptional activity.


Journal of Lipid Research | 2010

Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans

Thuc T. Le; Holli M. Duren; Mikhail N. Slipchenko; Chang-Deng Hu; Ji-Xin Cheng

The ubiquity of lipids in biological structures and functions suggests that lipid metabolisms are highly regulated. However, current invasive techniques for lipid studies prevent characterization of the dynamic interactions between various lipid metabolism pathways. Here, we describe a noninvasive approach to study lipid metabolisms using a multifunctional coherent anti-Stokes Raman scattering (CARS) microscope. Using living Caenorhabditis elegans as a model organism, we report label-free visualization of coexisting neutral and autofluorescent lipid species. We find that the relative expression level of neutral and autofluorescent lipid species can be used to assay the genotype-phenotype relationship of mutant C. elegans with deletions in the genes encoding lipid synthesis transcription factors, LDL receptors, transforming growth factor β receptors, lipid desaturation enzymes, and antioxidant enzymes. Furthermore, by coupling CARS with fingerprint confocal Raman analysis, we analyze the unsaturation level of lipids in wild-type and mutant C. elegans. Our study shows that complex genotype-phenotype relationships between lipid storage, peroxidation, and desaturation can be rapidly and quantitatively analyzed in a single living C. elegans.

Collaboration


Dive into the Chang-Deng Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge