Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom K. Kerppola is active.

Publication


Featured researches published by Tom K. Kerppola.


Nature Biotechnology | 2003

Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis

Chang-Deng Hu; Tom K. Kerppola

The specificity of biological regulatory mechanisms relies on selective interactions between different proteins in different cell types and in response to different extracellular signals. We describe a bimolecular fluorescence complementation (BiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. This approach is based on complementation between fragments of fluorescent proteins with different spectral characteristics. We have identified 12 bimolecular fluorescent complexes that correspond to 7 different spectral classes. Bimolecular complex formation between fragments of different fluorescent proteins did not differentially affect the dimerization efficiency of the bZIP domains of Fos and Jun or the subcellular sites of interactions between these domains. Multicolor BiFC enables visualization of interactions between different proteins in the same cell and comparison of the efficiencies of complex formation with alternative interaction partners.


Oncogene | 2001

Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity.

Yurii Chinenov; Tom K. Kerppola

Fos and Jun family proteins regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with related bZIP proteins and with structurally unrelated transcription factors. These interactions at composite regulatory elements produce nucleoprotein complexes with high sequence-specificity and regulatory selectivity. Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins. The structural properties of Fos-Jun family proteins including opposite orientations of heterodimer binding and the ability to bend DNA can contribute to the assembly and functions of such complexes. The cooperative recruitment of transcription factors, coactivators and chromatin remodeling factors to promoter and enhancer regions generates multiprotein transcription regulatory complexes with cell- and stimulus-specific transcriptional activities. The gene-specific architecture of these complexes can mediate the selective control of transcriptional activity.


Annual review of biophysics | 2008

BIMOLECULAR FLUORESCENCE COMPLEMENTATION (BiFC) ANALYSIS AS A PROBE OF PROTEIN INTERACTIONS IN LIVING CELLS

Tom K. Kerppola

Protein interactions are a fundamental mechanism for the generation of biological regulatory specificity. The study of protein interactions in living cells is of particular significance because the interactions that occur in a particular cell depend on the full complement of proteins present in the cell and the external stimuli that influence the cell. Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the association between two nonfluorescent fragments of a fluorescent protein when they are brought in proximity to each other by an interaction between proteins fused to the fragments. Numerous protein interactions have been visualized using the BiFC assay in many different cell types and organisms. The BiFC assay is technically straightforward and can be performed using standard molecular biology and cell culture reagents and a regular fluorescence microscope or flow cytometer.


Nature Reviews Molecular Cell Biology | 2006

Visualization of molecular interactions by fluorescence complementation.

Tom K. Kerppola

The visualization of protein complexes in living cells enables the examination of protein interactions in their normal environment and the determination of their subcellular localization. The bimolecular fluorescence complementation assay has been used to visualize interactions among multiple proteins in many cell types and organisms. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin-family peptides.


Nature Protocols | 2006

Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells

Tom K. Kerppola

Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the discoveries that two non-fluorescent fragments of a fluorescent protein can form a fluorescent complex and that the association of the fragments can be facilitated when they are fused to two proteins that interact with each other. BiFC must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. It is not necessary for the interaction partners to juxtapose the fragments within a specific distance of each other because they can associate when they are tethered to a complex with flexible linkers. It is also not necessary for the interaction partners to form a complex with a long half-life or a high occupancy since the fragments can associate in a transient complex and un-associated fusion proteins do not interfere with detection of the complex. Many interactions can be visualized when the fusion proteins are expressed at levels comparable to their endogenous counterparts. The BiFC assay has been used for the visualization of interactions between many types of proteins in different subcellular locations and in different cell types and organisms. It is technically straightforward and can be performed using a regular fluorescence microscope and standard molecular biology and cell culture reagents.*Note: In the version of this article initially published online, the article’s page numbers should have been 1278–1286. In addition, the numbered items in Step 2 did not correspond to the format of the HTML version. In Steps 2–13, the locations of the TROUBLESHOOTING headings did not correspond to the Troubleshooting table. These errors have been corrected in the PDF version of the article.


Neuron | 1995

Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements

Linda M. Robertson; Tom K. Kerppola; Montserrat Vendrell; Daniel Luk; Richard J. Smeyne; Christopher Bocchiaro; James I. Morgan; Tom Curran

Transcription control regions of eukaryotic genes contain multiple sequence elements proposed to function independently to regulate transcription. We developed transgenic mice carrying fos-lacZ fusion genes with clustered point mutations in each of several distinct regulatory sequences: the sis-inducible element, the serum response element, the fos AP-1 site, and the calcium/cAMP response element. Analysis of Fos-lacZ expression in the CNS and in cultured cells demonstrated that all of the regulatory elements tested were required in concert for tissue- and stimulus-specific regulation of the c-fos promoter. This implies that the regulation of c-fos expression requires the concerted action of multiple control elements that direct the assembly of an interdependent transcription complex.


Cell | 1991

Fos-Jun heterodimers and jun homodimers bend DNA in opposite orientations: Implications for transcription factor cooperativity

Tom K. Kerppola; Tom Curran

Association of Fos and Jun with the AP-1 site results in a conformational change in the basic amino acid regions that constitute the DNA-binding domain. We show that Fos and Jun induce a corresponding alteration in the conformation of the DNA helix. Circular permutation analysis indicated that both Fos-Jun heterodimers and Jun homodimers induce flexure at the AP-1 site. Phasing analysis demonstrated that Fos-Jun heterodimers and Jun homodimers induce DNA bends that are directed in opposite orientations. Fos-Jun heterodimers bend DNA toward the major groove, whereas Jun homodimers bend DNA toward the minor groove. Fos and Jun peptides encompassing the dimerization and DNA-binding domains bend DNA in the same orientations as the full-length proteins. However, additional regions of both proteins influence the magnitude of the DNA bend angle. Thus, despite the amino acid sequence similarity in the basic region Fos-Jun heterodimers and Jun homodimers form topologically distinct DNA-protein complexes.


Journal of Biological Chemistry | 1996

The Proximal Regulatory Element of the Interferon-γ Promoter Mediates Selective Expression in T Cells

Laurie Penix; Marianne T. Sweetser; William M. Weaver; James P. Hoeffler; Tom K. Kerppola; Christopher B. Wilson

Interferon-γ (IFN-γ) is produced by natural killer cells and certain subsets of T cells, but the basis for its selective expression is unknown. Within the region between −108 and −40 base pairs of the IFN-γ promoter are two conserved and essential regulatory elements, which confer activation-specific expression in T cells. This report describes studies indicating that the most proximal of these two regulatory elements is an important determinant of its restricted expression. The proximal element is a composite site that binds members of the CREB/ATF, AP-1, and octamer families of transcription factors. Jun is essential for activation-induced transcription and binds preferably as a heterodimer with ATF-2. In contrast, CREB appears to dampen transcription from this element. The CpG dinucleotide in this element is selectively methylated in Th2 T cells and other cells that do not express IFN-γ, and methylation markedly reduces transcription factor binding. As a target for DNA methylation and for binding of transcription factors that mediate or impede transcription, this element appears to play a central role in controlling IFN-γ expression.


Molecular and Cellular Biology | 1994

Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region.

Wei Hsu; Tom K. Kerppola; Phang-Lang Chen; Tom Curran; Selina Chen-Kiang

NF-IL6 and AP-1 family transcription factors are coordinately induced by interleukin-6 (IL-6) in a cell-type-specific manner, suggesting that they mediate IL-6 signals in the nucleus. We show that the basic leucine zipper (bZIP) region of NF-IL6 mediates a direct association with the bZIP regions of Fos and Jun in vitro. This interaction does not depend on the presence of their cognate recognition DNA elements or the posttranslational modification of either partner. NF-IL6 homodimers can bind to both NF-IL6 and AP-1 sites, whereas Fos and Jun cannot bind to most NF-IL6 sites. Cross-family association with Fos or with Jun alters the DNA binding specificity of NF-IL6 and reduced its binding to NF-IL6 sites. NF-IL6 isoforms that differ in the site of translation initiation have distinct transcriptional activities. Activation of a reporter gene linked to the NF-IL6 site by NF-IL6 is repressed by Fos and by Jun in transient transfection assays. Thus, association with AP-1 results in repression of transcription activation by NF-IL6. The repression is NF-IL6 site dependent and may have a role in determining the promoter and cell type specificity in IL-6 signaling.


Molecular and Cellular Biology | 1993

Fos is a preferential target of glucocorticoid receptor inhibition of AP-1 activity in vitro.

Tom K. Kerppola; Daniel Luk; Tom Curran

Several regulatory interactions between the AP-1 and the nuclear hormone receptor families of transcription factors have been reported. However, the molecular mechanisms that underlie these interactions remain unknown, and models derived from transient-transfection experiments are contradictory. We have investigated the effect of the purified glucocorticoid receptor (GR) DNA-binding domain (GR residues 440 to 533 [GR440-533]) on DNA binding and transcription activation by Fos-Jun heterodimers and Jun homodimers. GR440-533 differentially inhibited DNA binding and transcription activation by Fos-Jun heterodimers. Inhibition of Jun homodimers required a 10-fold-higher concentration of GR440-533. An excess of Fos monomers protected Fos-Jun heterodimers from inhibition by GR440-533. Surprisingly, regions outside the leucine zipper and basic region were required for GR inhibition of Fos and Jun DNA binding. The region of GR440-533 required for inhibition of Fos-Jun DNA binding was localized to the zinc finger DNA-binding domain. However, inhibition of Fos-Jun DNA binding was independent of DNA binding by GR440-533. GR440-533 also differentially inhibited Fos-Jun heterodimer binding to the proliferin plfG element. Differential inhibition of DNA binding by different AP-1 family complexes provides a potential mechanism for the diverse interactions between nuclear hormone receptors and AP-1 family proteins at different promoters and in different cell types.

Collaboration


Dive into the Tom K. Kerppola's collaboration.

Top Co-Authors

Avatar

Tom Curran

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huai Deng

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Luk

Roche Institute of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge