Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chang Oh Kim is active.

Publication


Featured researches published by Chang Oh Kim.


Nature Communications | 2014

High photoresponsivity in an all-graphene p – n vertical junction photodetector

Chang Oh Kim; Sung Kim; Dong Hee Shin; Soo Seok Kang; Jong Min Kim; Chan Wook Jang; Soong Sin Joo; Jae Sung Lee; Ju Hwan Kim; Suk-Ho Choi; E. H. Hwang

Intensive studies have recently been performed on graphene-based photodetectors, but most of them are based on field effect transistor structures containing mechanically exfoliated graphene, not suitable for practical large-scale device applications. Here we report high-efficient photodetector behaviours of chemical vapor deposition grown all-graphene p-n vertical-type tunnelling diodes. The observed photodetector characteristics well follow what are expected from its band structure and the tunnelling of current through the interlayer between the metallic p- and n-graphene layers. High detectivity (~10(12) cm Hz(1/2) W(-1)) and responsivity (0.4~1.0 A W(-1)) are achieved in the broad spectral range from ultraviolet to near-infrared and the photoresponse is almost consistent under 6-month operations. The high photodetector performance of the graphene p-n vertical diodes can be understood by the high photocurrent gain and the carrier multiplication arising from impact ionization in graphene.


Scientific Reports | 2015

High-performance graphene-quantum-dot photodetectors

Chang Oh Kim; Sung Won Hwang; Sung Kim; Dong Hee Shin; Soo Seok Kang; Jong Min Kim; Chan Wook Jang; Ju Hwan Kim; Kyeong Won Lee; Suk-Ho Choi; E. H. Hwang

Graphene quantum dots (GQDs) have received much attention due to their novel phenomena of charge transport and light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Thus, the demonstration of photodetection gain with GQDs would be the basis for a plenty of applications not only as a single-function device in detecting optical signals but also a key component in the optoelectronic integrated circuits. Here, we firstly report high-efficient photocurrent (PC) behaviors of PDs consisting of multiple-layer GQDs sandwiched between graphene sheets. High detectivity (>1011 cm Hz1/2/W) and responsivity (0.2 ~ 0.5 A/W) are achieved in the broad spectral range from UV to near infrared. The observed unique PD characteristics prove to be dominated by the tunneling of charge carriers through the energy states in GQDs, based on bias-dependent variations of the band profiles, resulting in novel dark current and PC behaviors.


ACS Nano | 2013

Graphene p-n vertical tunneling diodes.

Sung Kim; Dong Hee Shin; Chang Oh Kim; Soo Seok Kang; Jong Min Kim; Chan Wook Jang; Soong Sin Joo; Jae Sung Lee; Ju Hwan Kim; Suk-Ho Choi; E. H. Hwang

Formation and characterization of graphene p-n junctions are of particular interest because the p-n junctions are used in a wide variety of electronic/photonic systems as building blocks. Graphene p-n junctions have been previously formed by using several techniques, but most of the studies are based on lateral-type p-n junctions, showing no rectification behaviors. Here, we report a new type of graphene p-n junction. We first fabricate and characterize vertical-type graphene p-n junctions with two terminals. One of the most important characteristics of the vertical junctions is the asymmetric rectifying behavior showing an on/off ratio of ~10(3) under bias voltages below ±10 V without gating at higher n doping concentrations, which may be useful for practical device applications. In contrast, at lower n doping concentrations, the p-n junctions are ohmic, consistent with the Klein-tunneling effect. The observed rectification results possibly from the formation of strongly corrugated insulating or semiconducting interlayers between the metallic p- and n-graphene sheets at higher n doping concentrations, which is actually a structure like a metal-insulator-metal or metal-semiconductor-metal tunneling diode. The properties of the diodes are almost invariant even 6 months after fabrication.


Applied Physics Letters | 2013

Size-dependence of Raman scattering from graphene quantum dots: Interplay between shape and thickness

Sung Kim; Dong Hee Shin; Chang Oh Kim; Soo Seok Kang; Soong Sin Joo; Suk-Ho Choi; Sung Won Hwang; Cheolsoo Sone

Raman-scattering behaviors have been studied in graphene quantum dots (GQDs) by varying their average size (d) from 5 to 35 nm. The peak frequencies of D and 2D bands are almost irrespective of d, and the intensity of the D band is larger than that of the G band over almost full range of d. These results suggest that GQDs are defective, possibly resulting from the dominant contributions from the edge states at the periphery of GQDs. The G band shows a maximum peak frequency at d = ∼17 nm, whilst the full-width half maximum of the G band and the peak-intensity ratio of the D to G bands are minimized at d = ∼17 nm. Since the average thickness of GQDs (t) is proportional to d, t can act as a factor affecting the d-dependent Raman-scattering behaviors, but they cannot be explained solely by the t variation. We propose that the abrupt changes in the Raman-scattering behaviors of GQDs at d = ∼17 nm originate from size-dependent edge-state variation of GQDs at d = ∼17 nm as d increases.


Applied Physics Letters | 2010

Doping- and size-dependent photovoltaic properties of p-type Si-quantum-dot heterojunction solar cells: correlation with photoluminescence

Seung Hui Hong; Jae Hee Park; Dong Hee Shin; Chang Oh Kim; Suk-Ho Choi; Kyung Joong Kim

Boron-doped SiOx/SiO2 superlattices have been prepared on n-type Si (100) wafers by ion beam sputtering and subsequently annealed to form p-type Si quantum dots (QDs)/n-type Si-wafer heterojunction solar cells. Systematic studies on photoluminescence (PL) and photovoltaic effects show that optimum formation of Si QDs, proper doping concentration (nB), and minimization of defects are crucial factors for enhancing energy-conversion efficiency of the solar cells. Highest efficiency of 9.5% is obtained under the conditions of x=1.0 (QD size: ∼5 nm) and nB=6.3×1020 cm−3. Possible physical mechanisms are discussed to explain the correlation of the photovoltaic parameters and the QD-/defect-PL intensities. The demonstration of the photovoltaic effects in the Si-QD heterojunction solar cells is promising for the development of next-generation all-Si-QD solar cells.


Advanced Materials | 2015

Graphene/Si‐Quantum‐Dot Heterojunction Diodes Showing High Photosensitivity Compatible with Quantum Confinement Effect

Dong Hee Shin; Sung Kim; Jong Min Kim; Chan Wook Jang; Ju Hwan Kim; Kyeong Won Lee; Jungkil Kim; Si Duck Oh; Dae Hun Lee; Soo Seok Kang; Chang Oh Kim; Suk-Ho Choi; Kyung Joong Kim

Graphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism.


Applied Physics Letters | 2009

Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films

Sung Kim; Dong Hee Shin; Chang Oh Kim; Sung Won Hwang; Suk-Ho Choi; Seungmuk Ji; Ja-Yong Koo

We report interesting observation of strong enhancement of ultraviolet luminescence from hybrid structures of single-walled carbon nanotubes (SWNTs)/ZnO. SWNTs of 3–120 nm thickness (t) were deposited on top of 100 nm ZnO films/n-type Si (100) wafer by spin coating and vacuum filtration to form the hybrid structures. Photoluminescence (PL) intensity of the hybrid structures increases with increasing t up to 10 nm, becomes almost ten times larger at t=10 nm than that of the bare ZnO film and decreases with increasing t above 10 nm. This strong PL enhancement is also confirmed by PL mapping. These findings are discussed based on the surface-plasmon-mediated emission mechanism.


Applied Physics Letters | 2012

Size-dependent radiative decay processes in graphene quantum dots

Sung Kim; Dong Hee Shin; Chang Oh Kim; Soo Seok Kang; Jong Min Kim; Suk-Ho Choi; Li-Hua Jin; Yong-Hoon Cho; Sung Won Hwang; Cheolsoo Sone

Radiative decay processes have been studied in graphene quantum dots (GQDs) by varying their size. The photoluminescence (PL) decay traces are well fitted to a biexponential function with lifetimes of τ1 and τ2, indicating their fast and slow components, respectively. The τ1 is almost constant, irrespective of the average GQD size (da) for two excitation wavelengths of 305 and 356 nm. In contrast, the τ2 decreases as da increases for da ≤ ∼17 nm, but da > ∼17 nm, it increases with increasing da for both the excitation wavelengths, similar to the size-dependent behaviors of the time-integrated PL peak energy. We propose that the τ1 and τ2 originate from size-independent fast band-to-band transition and size-dependent slow transition resulting from the edge-state variation at the periphery of GQDs, respectively.


Nanotechnology | 2010

Self-assembled growth and luminescence of crystalline Si/SiOx core?shell nanowires

Sung Kim; Chang Oh Kim; Dong-Gil Shin; Seung Hui Hong; Min Choul Kim; Joon Yong Kim; Suk-Ho Choi; Tae-Hyun Kim; Robert Elliman; Young-Min Kim

Crystalline Si/SiOx core/shell nanowires (NWs) are self-assembled by annealing Ni-coated hydrogenated Si-rich SiOx (SRO:H) films at 1100 degrees C in the presence of Si powder. Plasma-enhanced chemical vapor deposition is used to grow 100 nm SRO:H thin films with varying silicon concentration (n(Si)). The NWs vary from SiOx nanowires to Si/SiOx core/shell structures depending on the composition of the SRO:H substrate, with the fraction of core/shell structures increasing with increasing Si concentration. As n(Si) increases from 37 to 43 at.%, the average diameter of the NWs also increases from 48 to 157 nm. A growth model based on the diffusion-assisted vapor-liquid-solid mechanism is proposed to explain how the core/shell structures are self-assembled. Photoluminescence (PL) spectra of the individual NWs have two major emission bands in the near UV (381 nm) and blue (423 nm) ranges at n(Si) = 43 at.%, named as UV and BL PL bands, respectively. In contrast, only the BL PL band is observed at n(Si) < or = 39 at.%. These results suggest that the BL and UV PL bands can be attributed to the defect states in the SiOx shell and at the Si core/SiOx shell interface, respectively, and that the BL band is closely related to the growth process of the NWs.


Journal of Applied Physics | 2011

Nonvolatile memories using deep traps formed in HfO2 by Nb ion implantation

Min Choul Kim; Chang Oh Kim; Houng Taek Oh; Suk-Ho Choi; Kidane Belay; Robert Elliman; Salvy P. Russo

We report nonvolatile memories (NVMs) based on deep-energy trap levels formed in HfO2 by metal ion implantation. A comparison of Nb- and Ta-implanted samples shows that suitable charge-trapping centers are formed in Nb-implanted samples, but not in Ta-implanted samples. This is consistent with density-functional theory calculations which predict that only Nb will form deep-energy levels in the bandgap of HfO2. Photocurrent spectroscopy exhibits characteristics consistent with one of the trap levels predicted in these calculations. Nb-implanted samples showing memory windows in capacitance–voltage (V) curves always exhibit current (I) peaks in I–V curves, indicating that NVM effects result from deep traps in HfO2. In contrast, Ta-implanted samples show dielectric breakdowns during the I–V sweeps between 5 and 11 V, consistent with the fact that no trap levels are present. For a sample implanted with a fluence of 1013 Nb cm−2, the charge losses after 104 s are ∼9.8 and ∼25.5% at room temperature (RT) and 85...

Collaboration


Dive into the Chang Oh Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Kim

Kyung Hee University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. H. Hwang

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge