Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changai Wu is active.

Publication


Featured researches published by Changai Wu.


RNA | 2008

Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana

Han-Hua Liu; Xin Tian; Yan-Jie Li; Changai Wu; Chengchao Zheng

High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here, we identified 14 stress-inducible miRNAs using microarray data in which the effects of three abiotic stresses were surveyed in Arabidopsis thaliana. Among them, 10 high-salinity-, four drought-, and 10 cold-regulated miRNAs were detected, respectively. miR168, miR171, and miR396 responded to all of the stresses. Expression profiling by RT-PCR analysis showed great cross-talk among the high-salinity, drought, and cold stress signaling pathways. The existence of stress-related elements in miRNA promoter regions provided further evidence supporting our results. These findings extend the current view about miRNA as ubiquitous regulators under stress conditions.


BMC Genomics | 2008

Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice

Dong Wang; Ying-Hui Guo; Changai Wu; Guodong Yang; Yingying Li; Chengchao Zheng

BackgroundGenes in the CCCH family encode zinc finger proteins containing the motif with three cysteines and one histidine residues. They have been known to play important roles in RNA processing as RNA-binding proteins in animals. To date, few plant CCCH proteins have been studied functionally.ResultsIn this study, a comprehensive computational analysis identified 68 and 67 CCCH family genes in Arabidopsis and rice, respectively. A complete overview of this gene family in Arabidopsis was presented, including the gene structures, phylogeny, protein motifs, and chromosome locations. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. These results revealed that the CCCH families in Arabidopsis and rice were divided into 11 and 8 subfamilies, respectively. The gene duplication contributed to the expansion of the CCCH gene family in Arabidopsis genome. Expression studies indicated that CCCH proteins exhibit a variety of expression patterns, suggesting diverse functions. Finally, evolutionary analysis showed that one subfamily is higher plant specific. The expression profile indicated that most members of this subfamily are regulated by abiotic or biotic stresses, suggesting that they could have an effective role in stress tolerance.ConclusionOur comparative genomics analysis of CCCH genes and encoded proteins in two model plant species provides the first step towards the functional dissection of this emerging family of potential RNA-binding proteins.


Journal of Experimental Botany | 2008

Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast.

Tongtong Xue; Xinzheng Li; Wei Zhu; Changai Wu; Guodong Yang; Chengchao Zheng

A cDNA clone encoding a 64-amino acid type 3 metallothionein protein, designated GhMT3a, was isolated from cotton (Gossypium hirsutum) by cDNA library screening. Northern blot analysis indicated that mRNA accumulation of GhMT3a was up-regulated not only by high salinity, drought, and low temperature stresses, but also by heavy metal ions, abscisic acid (ABA), ethylene, and reactive oxygen species (ROS) in cotton seedlings. Transgenic tobacco (Nicotiana tabacum) plants overexpressing GhMT3a showed increased tolerance against abiotic stresses compared with wild-type plants. Interestingly, the induced expression of GhMT3a by salt, drought, and low-temperature stresses could be inhibited in the presence of antioxidants. H2O2 levels in transgenic tobacco plants were only half of that in wild-type (WT) plants under such stress conditions. According to in vitro assay, recombinant GhMT3a protein showed an ability to bind metal ions and scavenge ROS. Transgenic yeast overexpressing GhMT3a also showed higher tolerance against ROS stresses. Taken together, these results indicated that GhMT3a could function as an effective ROS scavenger and its expression could be regulated by abiotic stresses through ROS signalling.


New Phytologist | 2009

GhZFP1, a novel CCCH‐type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5

Ying-Hui Guo; Yue-Ping Yu; Dong Wang; Changai Wu; Guodong Yang; Jinguang Huang; Chengchao Zheng

* Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.


Molecular Cell | 2012

Stress-Induced Alternative Splicing Provides a Mechanism for the Regulation of MicroRNA Processing in Arabidopsis thaliana

Kang Yan; Peng Liu; Changai Wu; Guodong Yang; Rui Xu; Qian-Huan Guo; Jinguang Huang; Chengchao Zheng

MicroRNAs (miRNAs) have emerged as a class of regulators of gene expression through posttranscriptional degradation or translational repression in living cells. Increasing evidence points to the important relationship between miRNAs and environmental stress responses, but the regulatory mechanisms in plants are poorly understood. Here, we found that Arabidopsis thaliana intronic miR400 was cotranscribed with its host gene (At1g32583) and downregulated by heat treatment. Intriguingly, an alternative splicing (AS) event that occurred in the intron (306 bp) where MIR400 was located was specifically induced by heat stress. A 100 bp fragment was excised, and the remaining 206 bp intron containing MIR400 transcripts was retained in the host gene. The stress-induced AS event thus resulted in greater accumulation of miR400 primary transcripts and a low level of mature miR400. Together, these results provide the direct evidence that AS acts as a regulatory mechanism linking miRNAs and environmental stress in plants.


Journal of Experimental Botany | 2012

Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana

Liang Zhang; Yuzhen Li; Wenjing Lu; Fei Meng; Changai Wu; Xingqi Guo

Mitogen-activated protein kinase (MAPK) cascades are involved in various processes from plant growth and development to biotic and abiotic stress responses. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), play crucial roles in MAPK cascades to mediate a variety of stress responses in plants. However, few MAPKKs have been functionally characterized in cotton (Gossypium hirsutum). In this study, a novel gene, GhMKK5, from cotton belonging to the group C MAPKKs was isolated and characterized. The expression of GhMKK5 can be induced by pathogen infection, abiotic stresses, and multiple defence-related signal molecules. The overexpression of GhMKK5 in Nicotiana benthamiana enhanced the plants’ resistance to the bacterial pathogen Ralstonia solanacearum by elevating the expression of pathogen resistance (PR) genes, including PR1a, PR2, PR4, PR5, and NPR1, but increased the plants’ sensitivity to the oomycete pathogen Phytophthora parasitica var. nicotianae Tucker. Importantly, GhMKK5-overexpressing plants displayed markedly elevated expression of reactive oxygen species-related and cell death marker genes, such as NtRbohA and NtCDM, and resulted in hypersensitive response (HR)-like cell death characterized by the accumulation of H2O2. Furthermore, it was demonstrated that GhMKK5 overexpression in plants reduced their tolerance to salt and drought stresses, as determined by statistical analysis of seed germination, root length, leaf water loss, and survival rate. Drought obviously accelerated the cell death phenomenon in GhMKK5-overexpressing plants. These results suggest that GhMKK5 may play an important role in pathogen infection and the regulation of the salt and drought stress responses in plants.


Gene | 2012

Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses

Wei Lu; Xiaoli Tang; Yanqing Huo; Rui Xu; Shengdong Qi; Jinguang Huang; Chengchao Zheng; Changai Wu

Fructose 1,6-biphosphate aldolase (FBA) is a key enzyme in plants, which is involved not only in glycolysis and gluconeogenesis in the cytoplasm, but also in the Calvin cycle in plastids. Research on FBAs in various organisms has been reported, but there is none on FBAs in Arabidopsis at the molecular level. In the current study, eight FBA family genes (AtFBA1-8) were identified and analyzed in Arabidopsis thaliana. These genes have a highly conserved aldolase-type TIM barrel domain and a C-terminal peptide, but variable N-terminal peptides. Based on the phylogenetic analysis of FBA protein sequences from Arabidopsis and other plant species, AtFBA family was classified into two subfamilies, including three members (AtFBA1-3) with high similarities to FBAs occurring at plastid, and five (AtFBA4-8) with high similarities to FBAs localized in the cytoplasm. By confocal microscopy analysis with GFP fusion protein, AtFBA3 and AtFBA4 as well as AtFBA6 were observed to be localized in the plastid and cytoplasm, respectively. At least two duplicated gene pairs of AtFBA1 and AtFBA2, as well as AtFBA4 and AtFBA8 were found. Transcript level analysis of AtFBA genes in various tissues revealed the unique and overlapping expression patterns of plastid and cytosol AtFBA genes, suggesting that these genes may function at different stages of plant growth and development. Interestingly, AtFBA1, AtFBA2, AtFBA5 and AtFBA7 showed undetectable expression in roots. The expression patterns of AtFBA genes under different stress conditions suggested that all the members showed different expression patterns in response to stresses, including ABA, NaCl, Cd, abnormal temperature and drought, and, except for AtFBA3, most of the AtFBA genes were significantly responsive to drought stress in roots. Moreover, AtFBA1, AtFBA2, AtFBA5, AtFBA7 and AtFBA8 were induced by at least one of three sugars (sucrose, glucose and fructose) after 24h of treatment. Further functional analyses indicated important clues of AtFBA2, AtFBA6 and AtFBA8 in plant growth, stress responses and development, respectively. Thus these results provide additional knowledge on AtFBA families and their roles.


BMC Molecular Biology | 2011

GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity

Jing Shi; Liang Zhang; Hailong An; Changai Wu; Xingqi Guo

BackgroundMitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Members of group A and B have been extensively characterized, but little information on the group D MAPKs has been reported.ResultsIn this study, we isolated and characterised GhMPK16, the first group D MAPK gene found in cotton. Southern blot analysis suggests GhMPK16 is single copy in the cotton genome, and RNA blot analysis indicates that GhMPK16 transcripts accumulate following pathogen infection and treatment with multiple defense-related signal molecules. The analysis of the promoter region of GhMPK16 revealed a group of putative cis-acting elements related to stress responses. Subcellular localization analysis suggests that GhMPK16 acts in the nucleus. Transgenic Arabidopsis overexpressing GhMPK16 displayed significant resistance to fungi (Colletotrichum nicotianae and Alternaria alternata) and bacteria (Pseudomonas solanacearum) pathogen, and the transcripts of pathogen-related (PR) genes were more rapidly and strongly induced in the transgenic plants. Furthermore, transgenic Arabidopsis showed reduced drought tolerance and rapid H2O2 accumulation.ConclusionThese results suggest that GhMPK16 might be involved in multiple signal transduction pathways, including biotic and abiotic stress signaling pathways.


Plant Molecular Biology | 2011

A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco

Liang Zhang; Dongmei Xi; Shanwei Li; Zheng Gao; Shuoli Zhao; Jing Shi; Changai Wu; Xingqi Guo

Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A–D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypiumhirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotianatabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.


FEBS Journal | 2011

Transcript profiling during the early development of the maize brace root via Solexa sequencing

Yan-Jie Li; Ya‐Ru Fu; Jinguang Huang; Changai Wu; Chengchao Zheng

Currently, the molecular regulation mechanisms involved in the early development of maize brace root are poorly known. To gain insight into the transcriptome dynamics that are associated with its development, genome‐wide gene expression profiling was conducted by Solexa sequencing (Illumina Inc., San Diego, CA, USA). More than five million tags were generated from the stem node tissues without and with just‐emerged brace roots, including 149 524 and 178 131 clean tags in the two libraries, respectively. Of these, 82 864 (55.4%) and 91 678 (51.5%) tags were matched to the reference genes. The most differentially expressed tags with a log2 ratio > 2 or < −2 (P < 0.001) were analyzed further, representing 143 up‐regulated and 152 down‐regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Many genes or biological pathways were found to be commonly shared between brace root and lateral or adventitious root development, such as genes participating in cell wall degradation and synthesis, auxin transport and signaling, ethylene signaling, etc. Next, the expression patterns of 20 genes were assessed by quantitative real‐time PCR, and the results obtained showed general agreement with the Solexa analysis. Furthermore, a comparison of the brace root transcriptome with that of maize primary root revealed substantial differences in the categories and abundances of expressed transcripts. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize brace root and provide a comprehensive set of data that are essential for understanding its molecular regulation.

Collaboration


Dive into the Changai Wu's collaboration.

Top Co-Authors

Avatar

Chengchao Zheng

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guodong Yang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinguang Huang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xingqi Guo

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Liang Zhang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kang Yan

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuzhen Li

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rui Xu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengdong Qi

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge