Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengchao Zheng is active.

Publication


Featured researches published by Chengchao Zheng.


RNA | 2008

Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana

Han-Hua Liu; Xin Tian; Yan-Jie Li; Changai Wu; Chengchao Zheng

High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here, we identified 14 stress-inducible miRNAs using microarray data in which the effects of three abiotic stresses were surveyed in Arabidopsis thaliana. Among them, 10 high-salinity-, four drought-, and 10 cold-regulated miRNAs were detected, respectively. miR168, miR171, and miR396 responded to all of the stresses. Expression profiling by RT-PCR analysis showed great cross-talk among the high-salinity, drought, and cold stress signaling pathways. The existence of stress-related elements in miRNA promoter regions provided further evidence supporting our results. These findings extend the current view about miRNA as ubiquitous regulators under stress conditions.


BMC Genomics | 2008

Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice

Dong Wang; Ying-Hui Guo; Changai Wu; Guodong Yang; Yingying Li; Chengchao Zheng

BackgroundGenes in the CCCH family encode zinc finger proteins containing the motif with three cysteines and one histidine residues. They have been known to play important roles in RNA processing as RNA-binding proteins in animals. To date, few plant CCCH proteins have been studied functionally.ResultsIn this study, a comprehensive computational analysis identified 68 and 67 CCCH family genes in Arabidopsis and rice, respectively. A complete overview of this gene family in Arabidopsis was presented, including the gene structures, phylogeny, protein motifs, and chromosome locations. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. These results revealed that the CCCH families in Arabidopsis and rice were divided into 11 and 8 subfamilies, respectively. The gene duplication contributed to the expansion of the CCCH gene family in Arabidopsis genome. Expression studies indicated that CCCH proteins exhibit a variety of expression patterns, suggesting diverse functions. Finally, evolutionary analysis showed that one subfamily is higher plant specific. The expression profile indicated that most members of this subfamily are regulated by abiotic or biotic stresses, suggesting that they could have an effective role in stress tolerance.ConclusionOur comparative genomics analysis of CCCH genes and encoded proteins in two model plant species provides the first step towards the functional dissection of this emerging family of potential RNA-binding proteins.


Journal of Experimental Botany | 2008

Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast.

Tongtong Xue; Xinzheng Li; Wei Zhu; Changai Wu; Guodong Yang; Chengchao Zheng

A cDNA clone encoding a 64-amino acid type 3 metallothionein protein, designated GhMT3a, was isolated from cotton (Gossypium hirsutum) by cDNA library screening. Northern blot analysis indicated that mRNA accumulation of GhMT3a was up-regulated not only by high salinity, drought, and low temperature stresses, but also by heavy metal ions, abscisic acid (ABA), ethylene, and reactive oxygen species (ROS) in cotton seedlings. Transgenic tobacco (Nicotiana tabacum) plants overexpressing GhMT3a showed increased tolerance against abiotic stresses compared with wild-type plants. Interestingly, the induced expression of GhMT3a by salt, drought, and low-temperature stresses could be inhibited in the presence of antioxidants. H2O2 levels in transgenic tobacco plants were only half of that in wild-type (WT) plants under such stress conditions. According to in vitro assay, recombinant GhMT3a protein showed an ability to bind metal ions and scavenge ROS. Transgenic yeast overexpressing GhMT3a also showed higher tolerance against ROS stresses. Taken together, these results indicated that GhMT3a could function as an effective ROS scavenger and its expression could be regulated by abiotic stresses through ROS signalling.


New Phytologist | 2009

GhZFP1, a novel CCCH‐type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5

Ying-Hui Guo; Yue-Ping Yu; Dong Wang; Changai Wu; Guodong Yang; Jinguang Huang; Chengchao Zheng

* Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.


Molecular Cell | 2012

Stress-Induced Alternative Splicing Provides a Mechanism for the Regulation of MicroRNA Processing in Arabidopsis thaliana

Kang Yan; Peng Liu; Changai Wu; Guodong Yang; Rui Xu; Qian-Huan Guo; Jinguang Huang; Chengchao Zheng

MicroRNAs (miRNAs) have emerged as a class of regulators of gene expression through posttranscriptional degradation or translational repression in living cells. Increasing evidence points to the important relationship between miRNAs and environmental stress responses, but the regulatory mechanisms in plants are poorly understood. Here, we found that Arabidopsis thaliana intronic miR400 was cotranscribed with its host gene (At1g32583) and downregulated by heat treatment. Intriguingly, an alternative splicing (AS) event that occurred in the intron (306 bp) where MIR400 was located was specifically induced by heat stress. A 100 bp fragment was excised, and the remaining 206 bp intron containing MIR400 transcripts was retained in the host gene. The stress-induced AS event thus resulted in greater accumulation of miR400 primary transcripts and a low level of mature miR400. Together, these results provide the direct evidence that AS acts as a regulatory mechanism linking miRNAs and environmental stress in plants.


Gene | 2012

Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses

Wei Lu; Xiaoli Tang; Yanqing Huo; Rui Xu; Shengdong Qi; Jinguang Huang; Chengchao Zheng; Changai Wu

Fructose 1,6-biphosphate aldolase (FBA) is a key enzyme in plants, which is involved not only in glycolysis and gluconeogenesis in the cytoplasm, but also in the Calvin cycle in plastids. Research on FBAs in various organisms has been reported, but there is none on FBAs in Arabidopsis at the molecular level. In the current study, eight FBA family genes (AtFBA1-8) were identified and analyzed in Arabidopsis thaliana. These genes have a highly conserved aldolase-type TIM barrel domain and a C-terminal peptide, but variable N-terminal peptides. Based on the phylogenetic analysis of FBA protein sequences from Arabidopsis and other plant species, AtFBA family was classified into two subfamilies, including three members (AtFBA1-3) with high similarities to FBAs occurring at plastid, and five (AtFBA4-8) with high similarities to FBAs localized in the cytoplasm. By confocal microscopy analysis with GFP fusion protein, AtFBA3 and AtFBA4 as well as AtFBA6 were observed to be localized in the plastid and cytoplasm, respectively. At least two duplicated gene pairs of AtFBA1 and AtFBA2, as well as AtFBA4 and AtFBA8 were found. Transcript level analysis of AtFBA genes in various tissues revealed the unique and overlapping expression patterns of plastid and cytosol AtFBA genes, suggesting that these genes may function at different stages of plant growth and development. Interestingly, AtFBA1, AtFBA2, AtFBA5 and AtFBA7 showed undetectable expression in roots. The expression patterns of AtFBA genes under different stress conditions suggested that all the members showed different expression patterns in response to stresses, including ABA, NaCl, Cd, abnormal temperature and drought, and, except for AtFBA3, most of the AtFBA genes were significantly responsive to drought stress in roots. Moreover, AtFBA1, AtFBA2, AtFBA5, AtFBA7 and AtFBA8 were induced by at least one of three sugars (sucrose, glucose and fructose) after 24h of treatment. Further functional analyses indicated important clues of AtFBA2, AtFBA6 and AtFBA8 in plant growth, stress responses and development, respectively. Thus these results provide additional knowledge on AtFBA families and their roles.


FEBS Journal | 2011

Transcript profiling during the early development of the maize brace root via Solexa sequencing

Yan-Jie Li; Ya‐Ru Fu; Jinguang Huang; Changai Wu; Chengchao Zheng

Currently, the molecular regulation mechanisms involved in the early development of maize brace root are poorly known. To gain insight into the transcriptome dynamics that are associated with its development, genome‐wide gene expression profiling was conducted by Solexa sequencing (Illumina Inc., San Diego, CA, USA). More than five million tags were generated from the stem node tissues without and with just‐emerged brace roots, including 149 524 and 178 131 clean tags in the two libraries, respectively. Of these, 82 864 (55.4%) and 91 678 (51.5%) tags were matched to the reference genes. The most differentially expressed tags with a log2 ratio > 2 or < −2 (P < 0.001) were analyzed further, representing 143 up‐regulated and 152 down‐regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Many genes or biological pathways were found to be commonly shared between brace root and lateral or adventitious root development, such as genes participating in cell wall degradation and synthesis, auxin transport and signaling, ethylene signaling, etc. Next, the expression patterns of 20 genes were assessed by quantitative real‐time PCR, and the results obtained showed general agreement with the Solexa analysis. Furthermore, a comparison of the brace root transcriptome with that of maize primary root revealed substantial differences in the categories and abundances of expressed transcripts. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize brace root and provide a comprehensive set of data that are essential for understanding its molecular regulation.


Journal of Plant Biology | 2009

Arabidopsis thaliana Metallothionein, AtMT2a, Mediates ROS Balance during Oxidative Stress

Wei Zhu; Dong-Xiao Zhao; Qing Miao; Tongtong Xue; Xinzheng Li; Chengchao Zheng

Cold stress has been shown to induce the production of reactive oxygen species (ROS), which can elicit a potentially damaging oxidative burden on cellular metabolism. Here, the expression of a metallothionein gene (AtMT2a) was upregulated under low temperature and hydrogen peroxide (H2O2) stresses. The Arabidopsis T-DNA insertion mutant, mt2a, exhibited more sensitivity to cold stress compared to WT plants during the seed germination, and H2O2 levels in mt2a mutant were higher than that in WT plants during the cold stress. Synthetic GFP fused to AtMT2a was observed to be localized in cytosol. These results indicated that AtMT2a functions in tolerance against cold stress by mediating the ROS balance in the cytosol. Interestingly, mRNA level of AtMT2a was increased in seedlings of Arabidopsis cat2 mutant after cold treatment compared to WT seedlings, and overexpression of AtMT2a in cat2 could improve CAT activity under chilling stress. Moreover, the enzymatic activity of CAT in mt2a was higher than that in WT plants after cold treatment, suggesting that AtMT2a and CAT might complement each other in antioxidative process potentially in Arabidopsis. Taken together, our results provided a novel insight into the relationship between MTs and antioxidative enzymes in the ROS-scavenging system in plants.


PLOS ONE | 2012

The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

Wei Zhu; Qing Miao; Dan Sun; Guodong Yang; Changai Wu; Jinguang Huang; Chengchao Zheng

The mitochondrial phosphate transporter (MPT) plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.


Plant Cell and Environment | 2009

GhDREB1 enhances abiotic stress tolerance, delays GA‐mediated development and represses cytokinin signalling in transgenic Arabidopsis

Jinguang Huang; Mei Yang; Pei Liu; Guodong Yang; Changai Wu; Chengchao Zheng

Plants vary significantly in their ability to tolerate low temperatures. The CBF/DREB1 cold response pathway has been identified in many plant species and plays a pivotal role in low temperature tolerance. Here, we show that GhDREB1 is a functional homologue and elevates the freezing, salt and osmotic stress tolerance of transgenic Arabidopsis. The constitutive expression of GhDREB1 in Arabidopsis caused dwarfism and late flowering phenotypes, which could be rescued by exogenous application of GA(3). Endogenous bioactive GA contents were significantly lower in GhDREB1 overexpressing Arabidopsis than in wild-type plants. RT-PCR analyses revealed that the transcript levels of the GA synthase genes were higher in transgenics than in wild-type plants, whereas the GA deactivating genes were lower. Flowering related genes in different regulatory pathways were also affected by GhDREB1, which may account for the flowering delay phenotype. Moreover, the GhDREB1 overexpressing Arabidopsis exhibited decreased sensitivity to cytokinin (CK) which is associated with repression of expression of type-B and type-A ARRs, two key components in the CK-signalling pathway.

Collaboration


Dive into the Chengchao Zheng's collaboration.

Top Co-Authors

Avatar

Changai Wu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guodong Yang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinguang Huang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kang Yan

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shizhong Zhang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanze Li

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rui Xu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fengjuan Jia

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Longtao Lu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lusha Ji

Shandong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge