Changchang Wu
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changchang Wu.
computer vision and pattern recognition | 2011
Changchang Wu; Sameer Agarwal; Brian Curless; Steven M. Seitz
We present the design and implementation of new inexact Newton type Bundle Adjustment algorithms that exploit hardware parallelism for efficiently solving large scale 3D scene reconstruction problems. We explore the use of multicore CPU as well as multicore GPUs for this purpose. We show that overcoming the severe memory and bandwidth limitations of current generation GPUs not only leads to more space efficient algorithms, but also to surprising savings in runtime. Our CPU based system is up to ten times and our GPU based system is up to thirty times faster than the current state of the art methods [1], while maintaining comparable convergence behavior. The code and additional results are available at http://grail.cs. washington.edu/projects/mcba.
computer vision and pattern recognition | 2008
Changchang Wu; Brian Clipp; Xiaowei Li; Jan Michael Frahm; Marc Pollefeys
The robust alignment of images and scenes seen from widely different viewpoints is an important challenge for camera and scene reconstruction. This paper introduces a novel class of viewpoint independent local features for robust registration and novel algorithms to use the rich information of the new features for 3D scene alignment and large scale scene reconstruction. The key point of our approach consists of leveraging local shape information for the extraction of an invariant feature descriptor. The advantages of the novel viewpoint invariant patch (VIP) are: that the novel features are invariant to 3D camera motion and that a single VIP correspondence uniquely defines the 3D similarity transformation between two scenes. In the paper we demonstrate how to use the properties of the VIPs in an efficient matching scheme for 3D scene alignment. The algorithm is based on a hierarchical matching method which tests the components of the similarity transformation sequentially to allow efficient matching and 3D scene alignment. We evaluate the novel features on real data with known ground truth information and show that the features can be used to reconstruct large scale urban scenes.
International Journal of Computer Vision | 2011
Rahul Raguram; Changchang Wu; Jan Michael Frahm; Svetlana Lazebnik
This article presents an approach for modeling landmarks based on large-scale, heavily contaminated image collections gathered from the Internet. Our system efficiently combines 2D appearance and 3D geometric constraints to extract scene summaries and construct 3D models. In the first stage of processing, images are clustered based on low-dimensional global appearance descriptors, and the clusters are refined using 3D geometric constraints. Each valid cluster is represented by a single iconic view, and the geometric relationships between iconic views are captured by an iconic scene graph. Using structure from motion techniques, the system then registers the iconic images to efficiently produce 3D models of the different aspects of the landmark. To improve coverage of the scene, these 3D models are subsequently extended using additional, non-iconic views. We also demonstrate the use of iconic images for recognition and browsing. Our experimental results demonstrate the ability to process datasets containing up to 46,000 images in less than 20 hours, using a single commodity PC equipped with a graphics card. This is a significant advance towards Internet-scale operation.
european conference on computer vision | 2010
Changchang Wu; Jan Michael Frahm; Marc Pollefeys
This paper presents a novel robust and efficient framework to analyze large repetitive structures in urban scenes. A particular contribution of the proposed approach is that it finds the salient boundaries of the repeating elements even when the repetition exists along only one direction. A perspective image is rectified based on vanishing points computed jointly from edges and repeated features detected in the original image by maximizing its overall symmetry. Then a feature-based method is used to extract hypotheses of repetition and symmetry from the rectified image, and initial repetition regions are obtained from the supporting features of each repetition interval. To maximize the local symmetry of each element, their boundaries along the repetition direction are determined from the repetition of local symmetry axes. For any image patch, we define its repetition quality for each repetition interval conditionally with a suppression of integer multiples of repetition intervals. We determine the boundary along the non-repeating direction by finding strong decreases of the repetition quality. Experiments demonstrate the robustness and repeatability of our repetition detection.
computer vision and pattern recognition | 2011
Changchang Wu; Jan Michael Frahm; Marc Pollefeys
This paper presents a novel approach for dense reconstruction from a single-view of a repetitive scene structure. Given an image and its detected repetition regions, we model the shape recovery as the dense pixel correspondences within a single image. The correspondences are represented by an interval map that tells the distance of each pixel to its matched pixels within the single image. In order to obtain dense repetitive structures, we develop a new repetition constraint that penalizes the inconsistency between the repetition intervals of the dynamically corresponding pixel pairs. We deploy a graph-cut to balance between the high-level constraint of geometric repetition and the low-level constraints of photometric consistency and spatial smoothness. We demonstrate the accurate reconstruction of dense 3D repetitive structures through a variety of experiments, which prove the robustness of our approach to outliers such as structure variations, illumination changes, and occlusions.
computer vision and pattern recognition | 2012
Changchang Wu; Sameer Agarwal; Brian Curless; Steven M. Seitz
This paper introduces a schematic representation for architectural scenes together with robust algorithms for reconstruction from sparse 3D point cloud data. The schematic models architecture as a network of transport curves, approximating a floorplan, with associated profile curves, together comprising an interconnected set of swept surfaces. The representation is extremely concise, composed of a handful of planar curves, and easily interpretable by humans. The approach also provides a principled mechanism for interpolating a dense surface, and enables filling in holes in the data, by means of a pipeline that employs a global optimization over all parameters. By incorporating a displacement map on top of the schematic surface, it is possible to recover fine details. Experiments show the ability to reconstruct extremely clean and simple models from sparse structure-from-motion point clouds of complex architectural scenes.
international conference on 3d vision | 2014
Qi Shan; Changchang Wu; Brian Curless; Yasutaka Furukawa; Carlos Hernández; Steven M. Seitz
We address the problem of geo-registering ground-based multi-view stereo models by ground-to-aerial image matching. The main contribution is a fully automated geo-registration pipeline with a novel viewpoint-dependent matching method that handles ground to aerial viewpoint variation. We conduct large-scale experiments which consist of many popular outdoor landmarks in Rome. The proposed approach demonstrates a high success rate for the task, and dramatically outperforms state-of-the-art techniques, yielding geo-registration at pixel-level accuracy.
computer vision and pattern recognition | 2008
Changchang Wu; Friedrich Fraundorfer; Jan Michael Frahm; Marc Pollefeys
This paper describes a method to efficiently search for 3D models in a city-scale database and to compute the camera poses from single query images. The proposed method matches SIFT features (from a single image) to viewpoint invariant patches (VIP) from a 3D model by warping the SIFT features approximately into the orthographic frame of the VIP features. This significantly increases the number of feature correspondences which results in a reliable and robust pose estimation. We also present a 3D model search tool that uses a visual word based search scheme to efficiently retrieve 3D models from large databases using individual query images. Together the 3D model search and the pose estimation represent a highly scalable and efficient city-scale localization system. The performance of the 3D model search and pose estimation is demonstrated on urban image data.
international conference on pattern recognition | 2010
Friedrich Fraundorfer; Changchang Wu; Marc Pollefeys
This paper describes an approach for mobile robot localization using a visual word based place recognition approach. In our approach we exploit the benefits of a stereo camera system for place recognition. Visual words computed from SIFT features are combined with VIP (viewpoint invariant patches) features that use depth information from the stereo setup. The approach was evaluated under the ImageCLEF@ICPR 2010 competition. The results achieved on the competition datasets are published in this paper.
conference on information sciences and systems | 2010
Jan Michael Frahm; Marc Pollefeys; Svetlana Lazebnik; Brian Clipp; David Gallup; Rahul Raguram; Changchang Wu
This paper tackles the active research problem of fast automatic modeling of large-scale environments from videos and unorganized still image collections. We describe a scalable 3D reconstruction framework that leverages recent research in robust estimation, image-based recognition, and stereo depth estimation. High computational speed is achieved through parallelization and execution on commodity graphics hardware. For video, we have implemented a reconstruction system that works in real time; for still photo collections, we have a system that is capable of processing thousands of images in less than a day on a single commodity computer. Modeling results from both systems are shown on a variety of large-scale real-world datasets.