Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven M. Seitz is active.

Publication


Featured researches published by Steven M. Seitz.


international conference on computer graphics and interactive techniques | 2006

Photo tourism: exploring photo collections in 3D

Noah Snavely; Steven M. Seitz; Richard Szeliski

We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our photo explorer uses image-based rendering techniques to smoothly transition between photographs, while also enabling full 3D navigation and exploration of the set of images and world geometry, along with auxiliary information such as overhead maps. Our system also makes it easy to construct photo tours of scenic or historic locations, and to annotate image details, which are automatically transferred to other relevant images. We demonstrate our system on several large personal photo collections as well as images gathered from Internet photo sharing sites.


computer vision and pattern recognition | 2006

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms

Steven M. Seitz; Brian Curless; James Diebel; Daniel Scharstein; Richard Szeliski

This paper presents a quantitative comparison of several multi-view stereo reconstruction algorithms. Until now, the lack of suitable calibrated multi-view image datasets with known ground truth (3D shape models) has prevented such direct comparisons. In this paper, we first survey multi-view stereo algorithms and compare them qualitatively using a taxonomy that differentiates their key properties. We then describe our process for acquiring and calibrating multiview image datasets with high-accuracy ground truth and introduce our evaluation methodology. Finally, we present the results of our quantitative comparison of state-of-the-art multi-view stereo reconstruction algorithms on six benchmark datasets. The datasets, evaluation details, and instructions for submitting new models are available online at http://vision.middlebury.edu/mview.


International Journal of Computer Vision | 2008

Modeling the World from Internet Photo Collections

Noah Snavely; Steven M. Seitz; Richard Szeliski

Abstract There are billions of photographs on the Internet, comprising the largest and most diverse photo collection ever assembled. How can computer vision researchers exploit this imagery? This paper explores this question from the standpoint of 3D scene modeling and visualization. We present structure-from-motion and image-based rendering algorithms that operate on hundreds of images downloaded as a result of keyword-based image search queries like “Notre Dame” or “Trevi Fountain.” This approach, which we call Photo Tourism, has enabled reconstructions of numerous well-known world sites. This paper presents these algorithms and results as a first step towards 3D modeling of the world’s well-photographed sites, cities, and landscapes from Internet imagery, and discusses key open problems and challenges for the research community.


International Journal of Computer Vision | 2000

A Theory of Shape by Space Carving

Kiriakos N. Kutulakos; Steven M. Seitz

In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarily-shaped scene from multiple photographs taken at known but arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a special member of this class, the photo hull, that (1) can be computed directly from photographs of the scene, and (2) subsumes all other members of this class. We then give a provably-correct algorithm, called Space Carving, for computing this shape and present experimental results on complex real-world scenes. The approach is designed to (1) capture photorealistic shapes that accurately model scene appearance from a wide range of viewpoints, and (2) account for the complex interactions between occlusion, parallax, shading, and their view-dependent effects on scene-appearance.


computer vision and pattern recognition | 1997

Photorealistic scene reconstruction by voxel coloring

Steven M. Seitz; Charles R. Dyer

A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space whose voxels are traversed in a fixed visibility ordering. This strategy takes full account of occlusions and allows the input cameras to be far apart and widely distributed about the environment. The algorithm identifies a special set of invariant voxels which together form a spatial and photometric reconstruction of the scene, fully consistent with the input images. The approach is evaluated with images from both inward-facing and outward-facing cameras.


international conference on computer graphics and interactive techniques | 1996

View morphing

Steven M. Seitz; Charles R. Dyer

Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple extension to image morphing that correctly handles 3D projective camera and scene transformations. The technique, called view morphing, works by prewarping two images prior to computing a morph and then postwarping the interpolated images. Because no knowledge of 3D shape is required, the technique may be applied to photographs and drawings, as well as rendered scenes. The ability to synthesize changes both in viewpoint and image structure affords a wide variety of interesting 3D effects via simple image transformations. CR


international conference on computer vision | 2009

Building Rome in a day

Sameer Agarwal; Noah Snavely; Ian Simon; Steven M. Seitz; Richard Szeliski

We present a system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo sharing sites. Our system uses a collection of novel parallel distributed matching and reconstruction algorithms, designed to maximize parallelism at each stage in the pipeline and minimize serialization bottlenecks. It is designed to scale gracefully with both the size of the problem and the amount of available computation. We have experimented with a variety of alternative algorithms at each stage of the pipeline and report on which ones work best in a parallel computing environment. Our experimental results demonstrate that it is now possible to reconstruct cities consisting of 150K images in less than a day on a cluster with 500 compute cores.


international symposium on 3d data processing visualization and transmission | 2002

Rapid shape acquisition using color structured light and multi-pass dynamic programming

Li Zhang; Brian Curless; Steven M. Seitz

This paper presents a color structured light technique for recovering object shape from one or more images. The technique works by projecting a pattern of stripes of alternating colors and matching the projected color transitions with observed edges in the image. The correspondence problem is solved using a novel, multi-pass dynamic programming algorithm that eliminates global smoothness assumptions and strict ordering constraints present in previous formulations. The resulting approach is suitable for generating both high-speed scans of moving objects when projecting a single stripe pattern and high-resolution scans of static scenes using a short sequence of time-shifted stripe patterns. In the latter case, space-time analysis is used at each sensor pixel to obtain inter-frame depth localization. Results are demonstrated for a variety of complex scenes.


international conference on computer graphics and interactive techniques | 2004

Spacetime faces: high resolution capture for modeling and animation

Li Zhang; Noah Snavely; Brian Curless; Steven M. Seitz

We present an end-to-end system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stereo algorithm is introduced to compute depth maps accurately and overcome over-fitting deficiencies in prior work. A new template fitting and tracking procedure fills in missing data and yields point correspondence across the entire sequence without using markers. We demonstrate a data-driven, interactive method for inverse kinematics that draws on the large set of fitted templates and allows for posing new expressions by dragging surface points directly. Finally, we describe new tools that model the dynamics in the input sequence to enable new animations, created via key-framing or texture-synthesis techniques.


computer vision and pattern recognition | 2011

Multicore bundle adjustment

Changchang Wu; Sameer Agarwal; Brian Curless; Steven M. Seitz

We present the design and implementation of new inexact Newton type Bundle Adjustment algorithms that exploit hardware parallelism for efficiently solving large scale 3D scene reconstruction problems. We explore the use of multicore CPU as well as multicore GPUs for this purpose. We show that overcoming the severe memory and bandwidth limitations of current generation GPUs not only leads to more space efficient algorithms, but also to surprising savings in runtime. Our CPU based system is up to ten times and our GPU based system is up to thirty times faster than the current state of the art methods [1], while maintaining comparable convergence behavior. The code and additional results are available at http://grail.cs. washington.edu/projects/mcba.

Collaboration


Dive into the Steven M. Seitz's collaboration.

Top Co-Authors

Avatar

Brian Curless

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Charles R. Dyer

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge