Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ChangHui Pak is active.

Publication


Featured researches published by ChangHui Pak.


Neuron | 2013

Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells

Yingsha Zhang; ChangHui Pak; Yan Han; Henrik Ahlenius; Zhenjie Zhang; Soham Chanda; Samuele Marro; Christopher Patzke; Claudio Acuna; Jason P. Covy; Wei Xu; Nan Yang; Tamas Danko; Lu Chen; Marius Wernig; Thomas C. Südhof

Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome, slow, and variable. Alternatively, human fibroblasts can be directly converted into induced neuronal (iN) cells. However, with present techniques conversion is inefficient, synapse formation is limited, and only small amounts of neurons can be generated. Here, we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2 weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin, form mature pre- and postsynaptic specializations, and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples, our approach enables large-scale studies of human neurons for questions such as analyses of human diseases, examination of human-specific genes, and drug screening.


Stem cell reports | 2014

Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

Soham Chanda; Cheen Euong Ang; Jonathan Davila; ChangHui Pak; Moritz Mall; Qian Yi Lee; Henrik Ahlenius; Seung Woo Jung; Thomas C. Südhof; Marius Wernig

Summary Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs) into mature induced neuronal (iN) cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN) expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.


Science | 2016

Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons.

Fei Yi; Tamas Danko; Salome Calado Botelho; Christopher Patzke; ChangHui Pak; Marius Wernig; Thomas C. Südhof

Faulty channels, not faulty synapses SHANK3 is a widely expressed scaffolding protein that is enriched in postsynaptic specializations. In mutant mice, SHANK3 mutations cause autism-like behavioral changes and exhibit alterations in synaptic transmission. Yi et al. produced human neurons lacking SHANK3 but not other genes that are also involved in the autism-like disease Phelan-McDermid syndrome. Instead of affecting synapses, SHANK3 mutations primarily caused a channelopathy, with the major phenotype consisting of a specific impairment of HCN channels. Chronic impairment of membrane currents through channelopathy could account for the phenotypes observed in Phelan-McDermid neurons, such as alterations in cognitive functions and the predisposition to epilepsy. Science, this issue p. 10.1126/science.aaf2669 SHANK3 mutations linked to autism spectrum disorders disrupt neuronal ion balance. INTRODUCTION SHANK3 is a scaffolding protein that is enriched in postsynaptic densities of excitatory synapses but ubiquitously expressed in most cells. SHANK3 gene mutations are significantly associated with autism spectrum disorders (ASDs), and deletion of SHANK3 is thought to cause the major symptoms of Phelan-McDermid syndrome. Moreover, increasing evidence links SHANK3 mutations to schizophrenia. Because SHANK3 is a synaptic protein, SHANK3 mutations are thought to predispose to neuropsychiatric disorders by impairing synaptic function. How SHANK3 mutations are pathogenic, however, remains unclear. RATIONALE Human neurons derived from Phelan-McDermid syndrome patients display complex abnormalities, including synaptic deficits and altered intrinsic electrical properties. Although some of these abnormalities are reversed by SHANK3 reexpression, the altered electrical properties are difficult to reconcile with a primarily synaptic impairment. Moreover, in mice, Shank3 deletions produce behavioral changes and synaptic transmission deficits, although no cellular phenotype has been identified. Here, we explored the pathogenetic mechanism of human SHANK3 mutations with a conditional genetic approach in human neurons and correlated the results with those obtained in Shank3-mutant mouse neurons. We introduced conditional SHANK3 deletions into human embryonic stem cells and examined isogenic control and heterozygous and homozygous SHANK3-mutant neurons derived from these conditionally mutant cells. In addition, we analyzed developing mouse Shank3-mutant neurons and compared their phenotype with that of human SHANK3-mutant neurons. RESULTS Heterozygous and homozygous SHANK3-mutant human neurons displayed diverse abnormalities, ranging from a massive increase in input resistance to increased excitability, modest impairments in dendritic arborization, and decreases in synaptic transmission. Because the increased input resistance suggested an altered channel conductance as a primary impairment, we tested various conductances. We found that the SHANK3 mutations caused a profound impairment in hyperpolarization-activated cation (Ih) currents, which are mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. This impairment produced the increased input resistance; moreover, chronic pharmacological inhibition of Ih currents in wild-type human neurons impaired dendritic arborization and synaptic transmission similar to the SHANK3 mutations. Mechanistically, we detected a direct interaction of HCN channels with SHANK3 protein and observed a decrease in HCN-channel proteins in SHANK3-mutant neurons. Finally, we found that developing hippocampal neurons cultured from heterozygous and homozygous Shank3-mutant mice also exhibited an increased input resistance, reduced Ih currents, and an increased excitability similar to SHANK3-mutant human neurons. CONCLUSION Using human neurons with conditional SHANK3 mutations, we found that SHANK3 mutations impair Ih-channel function, thereby increasing neuronal input resistance and enhancing neuronal excitability. This impairment in intrinsic electrical properties accounts, at least in part, for the decreased dendritic arborization and synaptic transmission of SHANK3-mutant neurons. The reduced Ih-current phenotype manifests early in neuronal development and is similarly observed in immature Shank3-mutant mouse neurons. We propose that, in addition to having a specifically postsynaptic function, SHANK3 protein may perform a general role during neurodevelopment by scaffolding HCN channels that mediate Ih currents in neurons and nonneuronal cells consistent with the ubiquitous expression of SHANK3. Thus, we hypothesize that SHANK3 mutations induce an Ih channelopathy that contributes to ASD pathogenesis and may be amenable to pharmacological intervention. Conditional SHANK3 deletion in human neurons impairs Ih channel. Comparison of isogenic control and SHANK3-deficient human neurons reveals that heterozygous and homozygous SHANK3 mutations dramatically decrease Ih-channel function, resulting in multifarious secondary impairments, including a decrease in dendritic arborization and synaptic responses and an increase in input resistance and neuronal excitability. Heterozygous SHANK3 mutations are associated with idiopathic autism and Phelan-McDermid syndrome. SHANK3 is a ubiquitously expressed scaffolding protein that is enriched in postsynaptic excitatory synapses. Here, we used engineered conditional mutations in human neurons and found that heterozygous and homozygous SHANK3 mutations severely and specifically impaired hyperpolarization-activated cation (Ih) channels. SHANK3 mutations caused alterations in neuronal morphology and synaptic connectivity; chronic pharmacological blockage of Ih channels reproduced these phenotypes, suggesting that they may be secondary to Ih-channel impairment. Moreover, mouse Shank3-deficient neurons also exhibited severe decreases in Ih currents. SHANK3 protein interacted with hyperpolarization-activated cyclic nucleotide-gated channel proteins (HCN proteins) that form Ih channels, indicating that SHANK3 functions to organize HCN channels. Our data suggest that SHANK3 mutations predispose to autism, at least partially, by inducing an Ih channelopathy that may be amenable to pharmacological intervention.


Human Molecular Genetics | 2008

The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits

Andrea M. Allan; Xiaomin Liang; Yuping Luo; ChangHui Pak; Xuekun Li; Keith E. Szulwach; Dahua Chen; Peng Jin; Xinyu Zhao

Methyl-CpG binding proteins (MBDs) are central components of DNA methylation-mediated epigenetic gene regulation. Alterations of epigenetic pathways are known to be associated with several neurodevelopmental disorders, particularly autism. Our previous studies showed that the loss of Mbd1 led to reduced hippocampal neurogenesis and impaired learning in mice. However, whether MBD1 regulates the autism-related cognitive functions remains unknown. Here we show that Mbd1 mutant (Mbd1(-/-)) mice exhibit several core deficits frequently associated with autism, including reduced social interaction, learning deficits, anxiety, defective sensory motor gating, depression and abnormal brain serotonin activity. Furthermore, we find that Mbd1 can directly regulate the expression of Htr2c, one of the serotonin receptors, by binding to its promoter, and the loss of Mbd1 led to elevated expression of Htr2c. Our results, therefore, demonstrate the importance of epigenetic regulation in mammalian brain development and cognitive functions. Understanding how the loss of Mbd1 could lead to autism-like behavioral phenotypes would reveal much-needed information about the molecular pathogenesis of autism.


Cell Stem Cell | 2015

Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1

ChangHui Pak; Tamas Danko; Yingsha Zhang; Jason Aoto; Garret R. Anderson; Stephan Maxeiner; Fei Yi; Marius Wernig; Thomas C. Südhof

Heterozygous mutations of the NRXN1 gene, which encodes the presynaptic cell-adhesion molecule neurexin-1, were repeatedly associated with autism and schizophrenia. However, diverse clinical presentations of NRXN1 mutations in patients raise the question of whether heterozygous NRXN1 mutations alone directly impair synaptic function. To address this question under conditions that precisely control for genetic background, we generated human ESCs with different heterozygous conditional NRXN1 mutations and analyzed two different types of isogenic control and NRXN1 mutant neurons derived from these ESCs. Both heterozygous NRXN1 mutations selectively impaired neurotransmitter release in human neurons without changing neuronal differentiation or synapse formation. Moreover, both NRXN1 mutations increased the levels of CASK, a critical synaptic scaffolding protein that binds to neurexin-1. Our results show that, unexpectedly, heterozygous inactivation of NRXN1 directly impairs synaptic function in human neurons, and they illustrate the value of this conditional deletion approach for studying the functional effects of disease-associated mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in Drosophila and humans

ChangHui Pak; Masoud Garshasbi; Kimia Kahrizi; Christina Gross; Luciano H. Apponi; John J. Noto; Seth M. Kelly; Andreas Tzschach; Farkhondeh Behjati; Seyedeh Sedigheh Abedini; Marzieh Mohseni; Lars R. Jensen; Hao Hu; Brenda Huang; Sara N. Stahley; Guanglu Liu; Kathryn R. Williams; Sharon K. Burdick; Yue Feng; Subhabrata Sanyal; Gary J. Bassell; Hans-Hilger Ropers; Hossein Najmabadi; Anita H. Corbett; Kenneth H. Moberg; Andreas W. Kuss

Here we report a human intellectual disability disease locus on chromosome 14q31.3 corresponding to mutation of the ZC3H14 gene that encodes a conserved polyadenosine RNA binding protein. We identify ZC3H14 mRNA transcripts in the human central nervous system, and we find that rodent ZC3H14 protein is expressed in hippocampal neurons and colocalizes with poly(A) RNA in neuronal cell bodies. A Drosophila melanogaster model of this disease created by mutation of the gene encoding the ZC3H14 ortholog dNab2, which also binds polyadenosine RNA, reveals that dNab2 is essential for development and required in neurons for normal locomotion and flight. Biochemical and genetic data indicate that dNab2 restricts bulk poly(A) tail length in vivo, suggesting that this function may underlie its role in development and disease. These studies reveal a conserved requirement for ZC3H14/dNab2 in the metazoan nervous system and identify a poly(A) RNA binding protein associated with a human brain disorder.


Epigenetics | 2007

Epigenetics and Neural Developmental Disorders: Washington DC, September 18 and 19, 2006

Xinyu Zhao; ChangHui Pak; Richard D. Smrt; Peng Jin

Neural developmental disorders, such as autism, Rett Syndrome, Fragile X syndrome, and Angelman syndrome manifest during early postnatal neural development. Although the genes responsible for some of these disorders have been identified, how the mutations of these genes affect neural development is currently unclear. Emerging evidence suggest that these disorders share common underlying defects in neuronal morphology, synaptic connectivity and brain plasticity. In particular, alterations in dendritic branching and spine morphology play a central role in the pathophysiology of most mental retardation disorders, suggesting that common pathways regulating neuronal function may be affected. Epigenetic modulations, mediated by DNA methylation, RNA-associated silencing, and histone modification, can serve as an intermediate process that imprints dynamic environmental experiences on the “fixed” genome, resulting in stable alterations in phenotypes. Disturbance in epigenetic regulations can lead to inappropriate expression or silencing of genes, causing an array of multi-system disorders and neoplasias. Rett syndrome, the most common form of mental retardation in young girls, is due to germline mutation of MECP2, encoding a methylated DNA binding protein that translates DNA methylation into gene repression. Angelman syndrome is due to faulty genomic imprinting or maternal mutations in UBE3A. Fragile X Syndrome, in most cases, results from the hypermethylation of FMR1 promoter, hence the loss of expression of functional FMRP protein. Autism, with its complex etiology, may have strong epigenetic link. Together, these observations strongly suggest that epigenetic mechanisms may play a critical role in brain development and etiology of related disorders. This report summarizes the scientific discussions and major conclusions from a recent conference that aimed to gain insight into the common molecular pathways affected among these disorders and discover potential therapeutic targets that have been missed by looking at one disorder at a time.


RNA | 2014

A conserved role for the zinc finger polyadenosine RNA binding protein, ZC3H14, in control of poly(A) tail length

Seth M. Kelly; ChangHui Pak; Ayan Banerjee; Kenneth H. Moberg; Anita H. Corbett

The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.


The Journal of Neuroscience | 2017

Presynaptic neuronal pentraxin receptor organizes excitatory and inhibitory synapses.

Sung-Jin Lee; Mengping Wei; Chen Zhang; Stephan Maxeiner; ChangHui Pak; Salome Calado Botelho; Justin H. Trotter; Fredrik H. Sterky; Thomas C. Südhof

Three neuronal pentraxins are expressed in brain, the membrane-bound “neuronal pentraxin receptor” (NPR) and the secreted proteins NP1 and NARP (i.e., NP2). Neuronal pentraxins bind to AMPARs at excitatory synapses and play important, well-documented roles in the activity-dependent regulation of neural circuits via this binding activity. However, it is unknown whether neuronal pentraxins perform roles in synapses beyond modulating postsynaptic AMPAR-dependent plasticity, and whether they may even act in inhibitory synapses. Here, we show that NPR expressed in non-neuronal cells potently induces formation of both excitatory and inhibitory postsynaptic specializations in cocultured hippocampal neurons. Knockdown of NPR in hippocampal neurons, conversely, dramatically decreased assembly and function of both excitatory and inhibitory postsynaptic specializations. Overexpression of NPR rescued the NPR knockdown phenotype but did not in itself change synapse numbers or properties. However, the NPR knockdown decreased the levels of NARP, whereas NPR overexpression produced a dramatic increase in the levels of NP1 and NARP, suggesting that NPR recruits and stabilizes NP1 and NARP on the presynaptic plasma membrane. Mechanistically, NPR acted in excitatory synapse assembly by binding to the N-terminal domain of AMPARs; antagonists of AMPA and GABA receptors selectively inhibited NPR-induced heterologous excitatory and inhibitory synapse assembly, respectively, but did not affect neurexin-1β-induced synapse assembly as a control. Our data suggest that neuronal pentraxins act as signaling complexes that function as general trans-synaptic organizers of both excitatory and inhibitory synapses by a mechanism that depends, at least in part, on the activity of the neurotransmitter receptors at these synapses. SIGNIFICANCE STATEMENT Neuronal pentraxins comprise three neuronal proteins, neuronal pentraxin receptor (NPR) which is a type-II transmembrane protein on the neuronal surface, and secreted neuronal pentraxin-1 and NARP. The general functions of neuronal pentraxins at synapses have not been explored, except for their basic AMPAR binding properties. Here, we examined the functional role of NPR at synapses because it is the only neuronal pentraxin that is anchored to the neuronal cell-surface membrane. We find that NPR is a potent inducer of both excitatory and inhibitory heterologous synapses, and that knockdown of NPR in cultured neurons decreases the density of both excitatory and inhibitory synapses. Our data suggest that NPR performs a general, previously unrecognized function as a universal organizer of synapses.


RNA Biology | 2012

New kid on the ID block: Neural functions of the Nab2/ZC3H14 class of Cys3His tandem zinc-finger polyadenosine RNA binding proteins

Seth M. Kelly; ChangHui Pak; Masoud Garshasbi; Andreas W. Kuss; Anita H. Corbett; Kenneth H. Moberg

Polyadenosine RNA binding proteins (Pabs) play critical roles in regulating the polyadenylation, nuclear export, stability, and translation of cellular RNAs. Although most Pabs are ubiquitously expressed and are thought to play general roles in post-transcriptional regulation, mutations in genes encoding these factors have been linked to tissue-specific diseases including muscular dystrophy and now intellectual disability (ID). Our recent work defined this connection to ID, as we showed that mutations in the gene encoding the ubiquitously expressed Cys3His tandem zinc-finger (ZnF) Pab, ZC3H14 (Zinc finger protein, CCCH-type, number 14) are associated with non-syndromic autosomal recessive intellectual disability (NS-ARID). This study provided a first link between defects in Pab function and a brain disorder, suggesting that ZC3H14 plays a required role in regulating RNAs in nervous system cells. Here we highlight key questions raised by our study of ZC3H14 and its ortholog in the fruit fly Drosophila melanogaster, dNab2, and comment on future approaches that could provide insights into the cellular and molecular roles of this class of zinc finger-containing Pabs. We propose a summary model depicting how ZC3H14-type Pabs might play particularly important roles in neuronal RNA metabolism.

Collaboration


Dive into the ChangHui Pak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Gross

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge