Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth M. Kelly is active.

Publication


Featured researches published by Seth M. Kelly.


Nature | 2013

A compendium of RNA-binding motifs for decoding gene regulation

Debashish Ray; Hilal Kazan; Kate B. Cook; Matthew T. Weirauch; Hamed Shateri Najafabadi; Xiao Li; Serge Gueroussov; Mihai Albu; Hong Zheng; Ally Yang; Hong Na; Manuel Irimia; Leah H. Matzat; Ryan K. Dale; Sarah A. Smith; Christopher A. Yarosh; Seth M. Kelly; Behnam Nabet; D. Mecenas; Weimin Li; Rakesh S. Laishram; Mei Qiao; Howard D. Lipshitz; Fabio Piano; Anita H. Corbett; Russ P. Carstens; Brendan J. Frey; Richard A. Anderson; Kristen W. Lynch; Luiz O. F. Penalva

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Recognition of polyadenosine RNA by zinc finger proteins

Seth M. Kelly; Suzette A. Pabit; Chad M. Kitchen; Peng Guo; Kavita A. Marfatia; T. J. Murphy; Anita H. Corbett; Keith M. Berland

Messenger RNA transcripts are coated from cap to tail with a dynamic combination of RNA binding proteins that process, package, and ultimately regulate the fate of mature transcripts. One class of RNA binding proteins essential for multiple aspects of mRNA metabolism consists of the poly(A) binding proteins. Previous studies have concentrated on the canonical RNA recognition motif-containing poly(A) binding proteins as the sole family of poly(A)-specific RNA binding proteins. In this study, we present evidence for a previously uncharacterized poly(A) recognition motif consisting of tandem CCCH zinc fingers. We have probed the nucleic acid binding properties of a yeast protein, Nab2, that contains this zinc finger motif. Results of this study reveal that the seven tandem CCCH zinc fingers of Nab2 specifically bind to polyadenosine RNA with high affinity. Furthermore, we demonstrate that a human protein, ZC3H14, which contains CCCH zinc fingers homologous to those found in Nab2, also specifically binds polyadenosine RNA. Thus, we propose that these proteins are members of an evolutionarily conserved family of poly(A) RNA binding proteins that recognize poly(A) RNA through a fundamentally different mechanism than previously characterized RNA recognition motif-containing poly(A) binding proteins.


Cell Reports | 2015

Increased expression of the PI3K enhancer PIKE mediates deficits in synaptic plasticity and behavior in fragile X syndrome.

Christina Gross; Chia Wei Chang; Seth M. Kelly; Aditi Bhattacharya; Sean M.J. McBride; Scott Walter Danielson; Michael Q. Jiang; Chi Bun Chan; Keqiang Ye; Jay R. Gibson; Eric Klann; Thomas A. Jongens; Kenneth H. Moberg; Kimberly M. Huber; Gary J. Bassell

The PI3K enhancer PIKE links PI3K catalytic subunits to group 1 metabotropic glutamate receptors (mGlu1/5) and activates PI3K signaling. The roles of PIKE in synaptic plasticity and the etiology of mental disorders are unknown. Here, we show that increased PIKE expression is a key mediator of impaired mGlu1/5-dependent neuronal plasticity in mouse and fly models of the inherited intellectual disability fragile X syndrome (FXS). Normalizing elevated PIKE protein levels in FXS mice reversed deficits in molecular and cellular plasticity and improved behavior. Notably, PIKE reduction rescued PI3K-dependent and -independent neuronal defects in FXS. We further show that PI3K signaling is increased in a fly model of FXS and that genetic reduction of the Drosophila ortholog of PIKE, CenG1A rescued excessive PI3K signaling, mushroom body defects, and impaired short-term memory in these flies. Our results demonstrate a crucial role of increased PIKE expression in exaggerated mGlu1/5 signaling causing neuronal defects in FXS.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in Drosophila and humans

ChangHui Pak; Masoud Garshasbi; Kimia Kahrizi; Christina Gross; Luciano H. Apponi; John J. Noto; Seth M. Kelly; Andreas Tzschach; Farkhondeh Behjati; Seyedeh Sedigheh Abedini; Marzieh Mohseni; Lars R. Jensen; Hao Hu; Brenda Huang; Sara N. Stahley; Guanglu Liu; Kathryn R. Williams; Sharon K. Burdick; Yue Feng; Subhabrata Sanyal; Gary J. Bassell; Hans-Hilger Ropers; Hossein Najmabadi; Anita H. Corbett; Kenneth H. Moberg; Andreas W. Kuss

Here we report a human intellectual disability disease locus on chromosome 14q31.3 corresponding to mutation of the ZC3H14 gene that encodes a conserved polyadenosine RNA binding protein. We identify ZC3H14 mRNA transcripts in the human central nervous system, and we find that rodent ZC3H14 protein is expressed in hippocampal neurons and colocalizes with poly(A) RNA in neuronal cell bodies. A Drosophila melanogaster model of this disease created by mutation of the gene encoding the ZC3H14 ortholog dNab2, which also binds polyadenosine RNA, reveals that dNab2 is essential for development and required in neurons for normal locomotion and flight. Biochemical and genetic data indicate that dNab2 restricts bulk poly(A) tail length in vivo, suggesting that this function may underlie its role in development and disease. These studies reveal a conserved requirement for ZC3H14/dNab2 in the metazoan nervous system and identify a poly(A) RNA binding protein associated with a human brain disorder.


Journal of Molecular Biology | 2008

Structure of the N-Terminal Mlp1-Binding Domain of the Saccharomyces cerevisiae mRNA-Binding Protein, Nab2

Richard P. Grant; Neil J. Marshall; Ji-Chun Yang; Milo B. Fasken; Seth M. Kelly; Michelle T. Harreman; David Neuhaus; Anita H. Corbett; Murray Stewart

Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1–97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.


Journal of Biological Chemistry | 2010

Recognition of Polyadenosine RNA by the Zinc Finger Domain of Nuclear Poly(A) RNA-binding Protein 2 (Nab2) Is Required for Correct mRNA 3′-End Formation*

Seth M. Kelly; Luciano H. Apponi; Anna M. Bramley; Elizabeth J. Tran; Julia A. Chekanova; Susan R. Wente; Anita H. Corbett

Proteins bound to the poly(A) tail of mRNA transcripts, called poly(A)-binding proteins (Pabs), play critical roles in regulating RNA stability, translation, and nuclear export. Like many mRNA-binding proteins that modulate post-transcriptional processing events, assigning specific functions to Pabs is challenging because these processing events are tightly coupled to one another. To investigate the role that a novel class of zinc finger-containing Pabs plays in these coupled processes, we defined the mode of polyadenosine RNA recognition for the conserved Saccharomyces cerevisiae Nab2 protein and assessed in vivo consequences caused by disruption of RNA binding. The polyadenosine RNA recognition domain of Nab2 consists of three tandem Cys-Cys-Cys-His (CCCH) zinc fingers. Cells expressing mutant Nab2 proteins with decreased binding to polyadenosine RNA show growth defects as well as defects in poly(A) tail length but do not accumulate poly(A) RNA in the nucleus. We also demonstrate genetic interactions between mutant nab2 alleles and mutant alleles of the mRNA 3′-end processing machinery. Together, these data provide strong evidence that Nab2 binding to RNA is critical for proper control of poly(A) tail length.


Structure | 2012

Structural basis for polyadenosine-RNA binding by Nab2 Zn fingers and its function in mRNA nuclear export.

Christoph Brockmann; Sharon Soucek; Sonja I. Kuhlmann; Katherine Mills-Lujan; Seth M. Kelly; Ji-Chun Yang; Nahid Iglesias; Françoise Stutz; Anita H. Corbett; David Neuhaus; Murray Stewart

Summary Polyadenylation regulation and efficient nuclear export of mature mRNPs both require the polyadenosine-RNA-binding protein, Nab2, which contains seven CCCH Zn fingers. We describe here the solution structure of fingers 5-7, which are necessary and sufficient for high-affinity polyadenosine-RNA binding, and identify key residues involved. These Zn fingers form a single structural unit. Structural coherence is lost in the RNA-binding compromised Nab2-C437S mutant, which also suppresses the rat8-2 allele of RNA helicase Dbp5. Structure-guided Nab2 variants indicate that dbp5(rat8-2) suppression is more closely linked to hyperadenylation and suppression of mutant alleles of the nuclear RNA export adaptor, Yra1, than to affinity for polyadenosine-RNA. These results indicate that, in addition to modulating polyA tail length, Nab2 has an unanticipated function associated with generating export-competent mRNPs, and that changes within fingers 5-7 lead to suboptimal assembly of mRNP export complexes that are more easily disassembled by Dbp5 upon reaching the cytoplasm.


Molecular and Cellular Biology | 2007

An Interaction between Two RNA Binding Proteins, Nab2 and Pub1, Links mRNA Processing/Export and mRNA Stability

Luciano H. Apponi; Seth M. Kelly; Michelle T. Harreman; Alexander N. Lehner; Anita H. Corbett; Sandro Roberto Valentini

ABSTRACT mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.


RNA | 2014

A conserved role for the zinc finger polyadenosine RNA binding protein, ZC3H14, in control of poly(A) tail length

Seth M. Kelly; ChangHui Pak; Ayan Banerjee; Kenneth H. Moberg; Anita H. Corbett

The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.


RNA Biology | 2012

New kid on the ID block: Neural functions of the Nab2/ZC3H14 class of Cys3His tandem zinc-finger polyadenosine RNA binding proteins

Seth M. Kelly; ChangHui Pak; Masoud Garshasbi; Andreas W. Kuss; Anita H. Corbett; Kenneth H. Moberg

Polyadenosine RNA binding proteins (Pabs) play critical roles in regulating the polyadenylation, nuclear export, stability, and translation of cellular RNAs. Although most Pabs are ubiquitously expressed and are thought to play general roles in post-transcriptional regulation, mutations in genes encoding these factors have been linked to tissue-specific diseases including muscular dystrophy and now intellectual disability (ID). Our recent work defined this connection to ID, as we showed that mutations in the gene encoding the ubiquitously expressed Cys3His tandem zinc-finger (ZnF) Pab, ZC3H14 (Zinc finger protein, CCCH-type, number 14) are associated with non-syndromic autosomal recessive intellectual disability (NS-ARID). This study provided a first link between defects in Pab function and a brain disorder, suggesting that ZC3H14 plays a required role in regulating RNAs in nervous system cells. Here we highlight key questions raised by our study of ZC3H14 and its ortholog in the fruit fly Drosophila melanogaster, dNab2, and comment on future approaches that could provide insights into the cellular and molecular roles of this class of zinc finger-containing Pabs. We propose a summary model depicting how ZC3H14-type Pabs might play particularly important roles in neuronal RNA metabolism.

Collaboration


Dive into the Seth M. Kelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murray Stewart

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Gross

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge