Changhyoun Park
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changhyoun Park.
Environmental Science & Technology | 2013
David R. Worton; Jason D. Surratt; Brian W. Lafranchi; A. W. H. Chan; Yunliang Zhao; R. J. Weber; Jeong Hoo Park; J. B. Gilman; Joost A. de Gouw; Changhyoun Park; Gunnar W. Schade; Melinda R. Beaver; Jason M. St. Clair; John D. Crounse; Paul O. Wennberg; Glenn M. Wolfe; Sara Harrold; Joel A. Thornton; Delphine K. Farmer; Kenneth S. Docherty; Michael J. Cubison; Jose L. Jimenez; Amanda A. Frossard; Lynn M. Russell; Kasper Kristensen; Marianne Glasius; Jingqiu Mao; Xinrong Ren; William H. Brune; E. C. Browne
Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.
Environmental Science & Technology | 2012
Haofei Zhang; David R. Worton; Michael Lewandowski; John Ortega; Caitlin L. Rubitschun; Jeong Hoo Park; Kasper Kristensen; Pedro Campuzano-Jost; Douglas A. Day; Jose L. Jimenez; Mohammed Jaoui; John H. Offenberg; Tadeusz E. Kleindienst; J. B. Gilman; William C. Kuster; Joost A. de Gouw; Changhyoun Park; Gunnar W. Schade; Amanda A. Frossard; Lynn M. Russell; Lisa Kaser; Werner Jud; Armin Hansel; Luca Cappellin; Thomas Karl; Marianne Glasius; Alex Guenther; Allen H. Goldstein; John H. Seinfeld; Avram Gold
2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.
Atmospheric Chemistry and Physics | 2012
Melinda R. Beaver; J. M. St. Clair; Fabien Paulot; K. M. Spencer; John D. Crounse; Brian W. Lafranchi; K.-E. Min; S. E. Pusede; P. J. Wooldridge; Gunnar W. Schade; Changhyoun Park; R. C. Cohen; Paul O. Wennberg
Journal of Geophysical Research | 2011
Changhyoun Park; Gunnar W. Schade; Ian Boedeker
Atmospheric Environment | 2010
Changhyoun Park; Gunnar W. Schade; Ian Boedeker
Atmospheric Environment | 2014
Sri Harsha Kota; Changhyoun Park; Martin C. Hale; Nicholas D. Werner; Gunnar W. Schade; Qi Ying
Archive | 2008
Changhyoun Park; Gunnar W. Schade; Ian Boedeker
Journal of Geophysical Research | 2011
Changhyoun Park; Gunnar W. Schade; Ian Boedeker
한국기상학회 학술대회 논문집 | 2012
Changhyoun Park; Hwa Woon Lee; Gunnar W. Schade
Journal of Geophysical Research | 2012
Changhyoun Park; Gunnar W. Schade; Ian Boedeker