Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda R. Beaver is active.

Publication


Featured researches published by Melinda R. Beaver.


Environmental Science & Technology | 2013

Observational insights into aerosol formation from isoprene.

David R. Worton; Jason D. Surratt; Brian W. Lafranchi; A. W. H. Chan; Yunliang Zhao; R. J. Weber; Jeong Hoo Park; J. B. Gilman; Joost A. de Gouw; Changhyoun Park; Gunnar W. Schade; Melinda R. Beaver; Jason M. St. Clair; John D. Crounse; Paul O. Wennberg; Glenn M. Wolfe; Sara Harrold; Joel A. Thornton; Delphine K. Farmer; Kenneth S. Docherty; Michael J. Cubison; Jose L. Jimenez; Amanda A. Frossard; Lynn M. Russell; Kasper Kristensen; Marianne Glasius; Jingqiu Mao; Xinrong Ren; William H. Brune; E. C. Browne

Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.


Journal of Physical Chemistry A | 2009

Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.

Miriam Arak Freedman; Christa A. Hasenkopf; Melinda R. Beaver; Margaret A. Tolbert

We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed.


Journal of Geophysical Research | 2014

Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010

James T. Kelly; Kirk R. Baker; J. B. Nowak; Jennifer G. Murphy; Milos Z. Markovic; Trevor C. VandenBoer; R. A. Ellis; J. Andrew Neuman; Rodney J. Weber; James M. Roberts; P. R. Veres; Joost A. de Gouw; Melinda R. Beaver; Sally Newman; Chris Misenis

National ambient air quality standards (NAAQS) have been set for PM_2.5 due to its association with adverse health effects. PM_2.5 design values in the South Coast Air Basin (SoCAB) and San Joaquin Valley of California exceed NAAQS levels, and NH^(+)_(4) and NO^(-)_(3) make up the largest fraction of total PM2.5 mass on polluted days. Here we evaluate fine-scale simulations of PM_(2.5) NH^(+)_(4) and NO^(-)_(3) with the Community Multiscale Air Quality model using measurements from routine networks and the California Research at the Nexus of Air Quality and Climate Change 2010 campaign. The model correctly simulates broad spatial patterns of NH^(+)_(4) and NO^(-)_(3) including the elevated concentrations in eastern SoCAB. However, areas for model improvement have been identified. NH_3 emissions from livestock and dairy facilities appear to be too low, while those related to waste disposal in western SoCAB may be too high. Analyses using measurements from flights over SoCAB suggest that problems with NH3 predictions can influence NO^(-)_(3) predictions there. Offline ISORROPIA II calculations suggest that overpredictions of NH_x in Pasadena cause excessive partitioning of total nitrate to the particle phase overnight, while underpredictions of Na^+ cause too much partitioning to the gas phase during the day. Also, the model seems to underestimate mixing during the evening boundary layer transition leading to excessive nitrate formation on some nights. Overall, the analyses demonstrate fine-scale variations in model performance within and across the air basins. Improvements in inventories and spatial allocations of NH_3 emissions and in parameterizations of sea spray emissions, evening mixing processes, and heterogeneous ClNO_2 chemistry could improve model performance.


Environmental Research Letters | 2008

A laboratory investigation of the relative humidity dependence of light extinction by?organic compounds from lignin combustion

Melinda R. Beaver; Rebecca M. Garland; Christa A. Hasenkopf; Tahllee Baynard; A. R. Ravishankara; Margaret A. Tolbert

Light extinction by atmospheric particles is strongly dependent on the size, chemical composition, and water content of the aerosol. Since light extinction by particles directly impacts climate and visibility, measurements of the extinction at various relative humidities (RHs) are needed. In this work, the optical growth factors, f RHext (80%RH, Dry) have been measured using cavity ring-down aerosol extinction spectroscopy at 532 nm for particles of varying organic/sulfate compositions. Specifically, slightly soluble, multifunctional aromatic compounds resulting from biomass burning have been investigated. In general, the organic compounds studied exhibit much smaller optical growth than inorganic compounds such as ammonium sulfate. Also, a linear relationship between mass fraction organic and optical growth has been observed for most organic compounds studied, in agreement with previous studies of more water-soluble organics. The role of particle density for mixtures that do not follow a linear relationship is also explored.


Astrobiology | 2011

Potential Climatic Impact of Organic Haze on Early Earth

Christa A. Hasenkopf; Miriam Arak Freedman; Melinda R. Beaver; Owen B. Toon; Margaret A. Tolbert

We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturns moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH < 100% and into their ability to act as cloud condensation nuclei (CCN) at RH > 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH < 100 %) could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds.


Journal of Physical Chemistry A | 2010

Cooling Enhancement of Aerosol Particles Due to Surfactant Precipitation

Melinda R. Beaver; Miriam Arak Freedman; Christa A. Hasenkopf; Margaret A. Tolbert

Light extinction by particles in Earths atmosphere is strongly dependent on the particle size, chemical composition, and ability to take up water. In this work, we have measured the optical growth factors, fRH(ext)(RH, dry), for complex particles composed of an inorganic salt, sodium nitrate, and an anionic surfactant, sodium dodecyl sulfate. In contrast with previous studies using soluble and slightly soluble organic compounds, optical growth in excess to that expected based on the volume weighted water uptake of the individual components is observed. We explored the relationship between optical growth and concentration of surfactant by investigating the role of particle density, the effect of a surfactant monolayer, and increased light extinction by surfactant aggregates and precipitates. For our experimental conditions, it is likely that surfactant precipitates are responsible for the observed increase in light scattering. The contribution of surfactant precipitates to light scattering of aerosol particles has not been previously explored and has significant implications for characterizing the aerosol direct effect.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States

Haofei Zhang; L. D. Yee; Ben H. Lee; Michael P. Curtis; David R. Worton; Gabriel Isaacman-VanWertz; John H. Offenberg; Michael Lewandowski; Tadeusz E. Kleindienst; Melinda R. Beaver; Amara L. Holder; William A. Lonneman; Kenneth S. Docherty; Mohammed Jaoui; Havala O. T. Pye; Weiwei Hu; Douglas A. Day; Pedro Campuzano-Jost; Jose L. Jimenez; Hongyu Guo; Rodney J. Weber; Joost A. de Gouw; Abigail Koss; Eric S. Edgerton; William H. Brune; Claudia Mohr; Felipe D. Lopez-Hilfiker; Anna Lutz; Nathan M. Kreisberg; Steve R. Spielman

Significance Atmospheric fine organic aerosol impacts air quality, climate, and human health. Speciating and quantifying the sources of organic aerosol on the molecular level improves understanding of their formation chemistry and hence the resulting impacts. Such study, however, has not been possible due to the chemical complexity of atmospheric organic aerosol. Here, we provide comprehensive molecular characterization of atmospheric organic aerosol samples from the southeastern United States by combining state-of-the-art high-resolution mass spectrometry techniques. We find that monoterpene secondary organic aerosol accounts for approximately half of total fine organic aerosol. More importantly, the monoterpene secondary organic aerosol mass increases with enhanced nitrogen oxide processing, indicating anthropogenic influence on biogenic secondary organic aerosol formation. The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic–biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Journal of The Air & Waste Management Association | 2018

Recommended metric for tracking visibility progress in the Regional Haze Rule

Brett Gantt; Melinda R. Beaver; Brian Timin; Phil Lorang

ABSTRACT For many national parks and wilderness areas with special air quality protections (Class I areas) in the western United States (U.S.), wildfire smoke and dust events can have a large impact on visibility. The U.S. Environmental Protection Agency’s (EPA) 1999 Regional Haze Rule used the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 yr at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA has revised the Regional Haze Rule to track visibility on the 20% most anthropogenically impaired (hereafter, most impaired) days rather than the haziest days. To support the implementation of this revised requirement, the EPA has proposed (but not finalized) a recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a “delta deciview” approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000–2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the northern Rockies and southwest U.S., but little change for the eastern U.S. Implications: Changing the approach for tracking visibility in the Regional Haze Rule allows the EPA, states, and the public to track visibility on days when reductions in anthropogenic emissions have the greatest potential to improve the view. The calculations involved with the recommended metric can be incorporated into the routine IMPROVE (Interagency Monitoring of Protected Visual Environments) data processing, enabling rapid analysis of current and future visibility trends. Natural visibility conditions are important in the calculations for the recommended metric, necessitating the need for additional analysis and potential refinement of their values.


Archive | 2007

Relative Humidity Dependence of Light Extinction by Mixed Organic/Sulfate Particles

Melinda R. Beaver; Tahllee Baynard; Rebecca M. Garland; Christa A. Hasenkopf; A. R. Ravishankara; Margaret A. Tolbert

Extinction by Mixed Organic/Sulfate Particles Melinda R. Beaver, Tahllee Baynard, Rebecca M. Garland, Christa Hasenkopf, A. R. Ravishankara, and Margaret A. Tolbert 1Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA; 2CIRES, Boulder, CO, USA 3NOAA Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, CO, USA; 4now at Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany 5Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA


Atmospheric Chemistry and Physics | 2010

Chemistry of hydrogen oxide radicals (HO x ) in the Arctic troposphere in spring

J. Mao; Daniel J. Jacob; M. J. Evans; J. R. Olson; Xinrong Ren; William H. Brune; J. M. St. Clair; John D. Crounse; K. M. Spencer; Melinda R. Beaver; Paul O. Wennberg; Michael J. Cubison; J. L. Jimenez; Alan Fried; Petter Weibring; James G. Walega; Spencer R. Hall; Andrew J. Weinheimer; R. C. Cohen; G. Chen; J. H. Crawford; Cameron Stuart McNaughton; Antony D. Clarke; Lyatt Jaeglé; Jenny A. Fisher; Robert M. Yantosca; P Le Sager; C. Carouge

Collaboration


Dive into the Melinda R. Beaver's collaboration.

Top Co-Authors

Avatar

Margaret A. Tolbert

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christa A. Hasenkopf

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

John D. Crounse

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William H. Brune

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J. M. St. Clair

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason M. St. Clair

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge