Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changjiang Jin is active.

Publication


Featured researches published by Changjiang Jin.


Molecular & Cellular Proteomics | 2008

GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy

Yu Xue; Jian Ren; Xinjiao Gao; Changjiang Jin; Longping Wen; Xuebiao Yao

Identification of protein phosphorylation sites with their cognate protein kinases (PKs) is a key step to delineate molecular dynamics and plasticity underlying a variety of cellular processes. Although nearly 10 kinase-specific prediction programs have been developed, numerous PKs have been casually classified into subgroups without a standard rule. For large scale predictions, the false positive rate has also never been addressed. In this work, we adopted a well established rule to classify PKs into a hierarchical structure with four levels, including group, family, subfamily, and single PK. In addition, we developed a simple approach to estimate the theoretically maximal false positive rates. The on-line service and local packages of the GPS (Group-based Prediction System) 2.0 were implemented in Java with the modified version of the Group-based Phosphorylation Scoring algorithm. As the first stand alone software for predicting phosphorylation, GPS 2.0 can predict kinase-specific phosphorylation sites for 408 human PKs in hierarchy. A large scale prediction of more than 13,000 mammalian phosphorylation sites by GPS 2.0 was exhibited with great performance and remarkable accuracy. Using Aurora-B as an example, we also conducted a proteome-wide search and provided systematic prediction of Aurora-B-specific substrates including protein-protein interaction information. Thus, the GPS 2.0 is a useful tool for predicting protein phosphorylation sites and their cognate kinases and is freely available on line.


Protein Engineering Design & Selection | 2008

CSS-Palm 2.0: an updated software for palmitoylation sites prediction

Jian Ren; Longping Wen; Xinjiao Gao; Changjiang Jin; Yu Xue; Xuebiao Yao

Protein palmitoylation is an essential post-translational lipid modification of proteins, and reversibly orchestrates a variety of cellular processes. Identification of palmitoylated proteins with their sites is the foundation for understanding molecular mechanisms and regulatory roles of palmitoylation. Contrasting to the labor-intensive and time-consuming experimental approaches, in silico prediction of palmitoylation sites has attracted much attention as a popular strategy. In this work, we updated our previous CSS-Palm into version 2.0. An updated clustering and scoring strategy (CSS) algorithm was employed with great improvement. The leave-one-out validation and 4-, 6-, 8- and 10-fold cross-validations were adopted to evaluate the prediction performance of CSS-Palm 2.0. Also, an additional new data set not included in training was used to test the robustness of CSS-Palm 2.0. By comparison, the performance of CSS-Palm was much better than previous tools. As an application, we performed a small-scale annotation of palmitoylated proteins in budding yeast. The online service and local packages of CSS-Palm 2.0 were freely available at: http://bioinformatics.lcd-ustc.org/css_palm.


Proteomics | 2009

Systematic study of protein sumoylation: Development of a site‐specific predictor of SUMOsp 2.0

Jian Ren; Xinjiao Gao; Changjiang Jin; Mei Zhu; Xiwei Wang; Andrew P. Shaw; Longping Wen; Xuebiao Yao; Yu Xue

Protein sumoylation is an important reversible post‐translational modification on proteins, and orchestrates a variety of cellular processes. Recently, computational prediction of sumoylation sites has attracted much attention for its cost‐efficiency and power in genomic data mining. In this work, we developed SUMOsp 2.0, an accurate computing program with an improved group‐based phosphorylation scoring algorithm. Our analysis demonstrated that SUMOsp 2.0 has greater prediction accuracy than SUMOsp 1.0 and other existing tools, with a sensitivity of 88.17% and a specificity of 92.69% under the medium threshold. Previously, several large‐scale experiments have identified a list of potential sumoylated substrates in Saccharomyces cerevisiae and Homo sapiens; however, the exact sumoylation sites in most of these proteins remain elusive. We have predicted potential sumoylation sites in these proteins using SUMOsp 2.0, which provides a great resource for researchers and an outline for further mechanistic studies of sumoylation in cellular plasticity and dynamics. The online service and local packages of SUMOsp 2.0 are freely available at: http://sumosp.biocuckoo.org/.


Protein Engineering Design & Selection | 2011

GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection

Yu Xue; Zexian Liu; Jun Cao; Qian Ma; Xinjiao Gao; Qingqi Wang; Changjiang Jin; Yanhong Zhou; Longping Wen; Jian Ren

As the most important post-translational modification of proteins, phosphorylation plays essential roles in all aspects of biological processes. Besides experimental approaches, computational prediction of phosphorylated proteins with their kinase-specific phosphorylation sites has also emerged as a popular strategy, for its low-cost, fast-speed and convenience. In this work, we developed a kinase-specific phosphorylation sites predictor of GPS 2.1 (Group-based Prediction System), with a novel but simple approach of motif length selection (MLS). By this approach, the robustness of the prediction system was greatly improved. All algorithms in GPS old versions were also reserved and integrated in GPS 2.1. The online service and local packages of GPS 2.1 were implemented in JAVA 1.5 (J2SE 5.0) and freely available for academic researches at: http://gps.biocuckoo.org.


PLOS ONE | 2010

GPS-SNO: Computational Prediction of Protein S-Nitrosylation Sites with a Modified GPS Algorithm

Yu Xue; Zexian Liu; Xinjiao Gao; Changjiang Jin; Longping Wen; Xuebiao Yao; Jian-Song Ren

As one of the most important and ubiquitous post-translational modifications (PTMs) of proteins, S-nitrosylation plays important roles in a variety of biological processes, including the regulation of cellular dynamics and plasticity. Identification of S-nitrosylated substrates with their exact sites is crucial for understanding the molecular mechanisms of S-nitrosylation. In contrast with labor-intensive and time-consuming experimental approaches, prediction of S-nitrosylation sites using computational methods could provide convenience and increased speed. In this work, we developed a novel software of GPS-SNO 1.0 for the prediction of S-nitrosylation sites. We greatly improved our previously developed algorithm and released the GPS 3.0 algorithm for GPS-SNO. By comparison, the prediction performance of GPS 3.0 algorithm was better than other methods, with an accuracy of 75.80%, a sensitivity of 53.57% and a specificity of 80.14%. As an application of GPS-SNO 1.0, we predicted putative S-nitrosylation sites for hundreds of potentially S-nitrosylated substrates for which the exact S-nitrosylation sites had not been experimentally determined. In this regard, GPS-SNO 1.0 should prove to be a useful tool for experimentalists. The online service and local packages of GPS-SNO were implemented in JAVA and are freely available at: http://sno.biocuckoo.org/.


Molecular & Cellular Proteomics | 2010

PhosSNP for Systematic Analysis of Genetic Polymorphisms That Influence Protein Phosphorylation

Jian Ren; Chunhui Jiang; Xinjiao Gao; Zexian Liu; Zineng Yuan; Changjiang Jin; Longping Wen; Zhaolei Zhang; Yu Xue; Xuebiao Yao

We are entering the era of personalized genomics as breakthroughs in sequencing technology have made it possible to sequence or genotype an individual person in an efficient and accurate manner. Preliminary results from HapMap and other similar projects have revealed the existence of tremendous genetic variations among world populations and among individuals. It is important to delineate the functional implication of such variations, i.e. whether they affect the stability and biochemical properties of proteins. It is also generally believed that the genetic variation is the main cause for different susceptibility to certain diseases or different response to therapeutic treatments. Understanding genetic variation in the context of human diseases thus holds the promise for “personalized medicine.” In this work, we carried out a genome-wide analysis of single nucleotide polymorphisms (SNPs) that could potentially influence protein phosphorylation characteristics in human. Here, we defined a phosphorylation-related SNP (phosSNP) as a non-synonymous SNP (nsSNP) that affects the protein phosphorylation status. Using an in-house developed kinase-specific phosphorylation site predictor (GPS 2.0), we computationally detected that ∼70% of the reported nsSNPs are potential phosSNPs. More interestingly, ∼74.6% of these potential phosSNPs might also induce changes in protein kinase types in adjacent phosphorylation sites rather than creating or removing phosphorylation sites directly. Taken together, we proposed that a large proportion of the nsSNPs might affect protein phosphorylation characteristics and play important roles in rewiring biological pathways. Finally, all phosSNPs were integrated into the PhosSNP 1.0 database, which was implemented in JAVA 1.5 (J2SE 5.0). The PhosSNP 1.0 database is freely available for academic researchers.


Journal of Biological Chemistry | 2007

Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment.

Dan Liu; Xia Ding; Jian Du; Xin Cai; Yuejia Huang; Tarsha Ward; Andrew R. E. Shaw; Yong Yang; Renming Hu; Changjiang Jin; Xuebiao Yao

Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here, we show that Homo sapiens (Hs) NUF2 is required for stable kinetochore localization of centromere-associated protein E (CENP-E) in HeLa cells. HsNUF2 specifies the kinetochore association of CENP-E by interacting with its C-terminal domain. The region of HsNUF2 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pulldown and yeast two-hybrid assays. Suppression of synthesis of HsNUF2 by small interfering RNA abrogated the localization of CENP-E to the kinetochore, demonstrating the requirement of HsNUF2 for CENP-E kinetochore localization. In addition, depletion of HsNUF2 caused aberrant chromosome segregation. These HsNUF2-suppressed cells displayed reduced tension at kinetochores of bi-orientated chromosomes. Double knockdown of CENP-E and HsNUF2 further abolished the tension at the kinetochores. Our results indicate that HsNUF2 and CENP-E are required for organization of stable microtubule-kinetochore attachment that is essential for faithful chromosome segregation in mitosis.


BMC Bioinformatics | 2006

NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm

Yu Xue; Hu Chen; Changjiang Jin; Zhirong Sun; Xuebiao Yao

BackgroundProtein palmitoylation, an essential and reversible post-translational modification (PTM), has been implicated in cellular dynamics and plasticity. Although numerous experimental studies have been performed to explore the molecular mechanisms underlying palmitoylation processes, the intrinsic feature of substrate specificity has remained elusive. Thus, computational approaches for palmitoylation prediction are much desirable for further experimental design.ResultsIn this work, we present NBA-Palm, a novel computational method based on Naïve Bayes algorithm for prediction of palmitoylation site. The training data is curated from scientific literature (PubMed) and includes 245 palmitoylated sites from 105 distinct proteins after redundancy elimination. The proper window length for a potential palmitoylated peptide is optimized as six. To evaluate the prediction performance of NBA-Palm, 3-fold cross-validation, 8-fold cross-validation and Jack-Knife validation have been carried out. Prediction accuracies reach 85.79% for 3-fold cross-validation, 86.72% for 8-fold cross-validation and 86.74% for Jack-Knife validation. Two more algorithms, RBF network and support vector machine (SVM), also have been employed and compared with NBA-Palm.ConclusionTaken together, our analyses demonstrate that NBA-Palm is a useful computational program that provides insights for further experimentation. The accuracy of NBA-Palm is comparable with our previously described tool CSS-Palm. The NBA-Palm is freely accessible from: http://www.bioinfo.tsinghua.edu.cn/NBA-Palm.


Oncogene | 2008

The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability

Jian Du; X Cai; J Yao; Xia Ding; Quan Wu; S Pei; K Jiang; Y Zhang; Wenwen Wang; Yunyu Shi; Y Lai; J Shen; M Teng; He Huang; Q Fei; E S Reddy; Jingde Zhu; Changjiang Jin; Xuebiao Yao

Loss or gain of whole chromosome, the form of chromosome instability commonly associated with cancers is thought to arise from aberrant chromosome segregation during cell division. Chromosome segregation in mitosis is orchestrated by the interaction of kinetochores with spindle microtubules. Our studies show that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. However, it was unclear how NEK2A ensures accurate chromosome segregation in mitosis. Here we show that NEK2A-mediated Hec1 (highly expressed in cancer) phosphorylation is essential for faithful kinetochore microtubule attachments in mitosis. Using phospho-specific antibody, our studies show that NEK2A phosphorylates Hec1 at Ser165 during mitosis. Although such phosphorylation is not required for assembly of Hec1 to the kinetochore, expression of non-phosphorylatable mutant Hec1S165 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. Our in vitro reconstitution experiment demonstrated that Hec1 binds to microtubule in low affinity and phosphorylation by NEK2A, which prevents aberrant kinetochore-microtubule connections in vivo, increases the affinity of the Ndc80 complex for microtubules in vitro. Thus, our studies illustrate a novel regulatory mechanism in which NEK2A kinase operates a faithful chromosome attachment to spindle microtubule, which prevents chromosome instability during cell division.


Oncogene | 2008

Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response.

Z Cheng; Yuwen Ke; Xia Ding; Fangjun Wang; H Wang; Wenwen Wang; K Ahmed; Zexian Liu; Y Xu; Felix O. Aikhionbare; H Yan; Jing Liu; Yu Xue; J Yu; Michael Powell; S Liang; Quan Wu; S E Reddy; Renming Hu; He Huang; Changjiang Jin; Xuebiao Yao

The histone acetyltransferase TIP60 regulates the DNA damage response following genotoxic stress by acetylating histone and remodeling chromatin. However, the molecular mechanisms underlying the TIP60-dependent response to UV-induced DNA damage remain poorly understood. To systematically analyse proteins that regulate TIP60 activity in response to UV irradiation, we performed a proteomic analysis of proteins selectively bound to TIP60 in response to UV irradiation using mass spectrometry and identified a novel regulatory mechanism by which TIP60 orchestrates transcriptional activation of p53-dependent checkpoint response in UV-irradiated cells. The initial step of this pathway involves UV-induced association of TIP60 with SUMO-conjugation enzymes and site-specific sumoylation of TIP60 at lysines 430 and 451 via Ubc9. This sumoylation initiates the relocation of TIP60 from nucleoplasm to the promyelocytic leukemia body, which is essential for the UV-irradiated DNA damage repair response via a p53-dependent pathway. Significantly, inhibition of TIP60 sumoylation by overexpression of non-sumoylatable mutant abrogates the p53-dependent DNA damage response, demonstrating the importance of TIP60 sumoylation in response to UV irradiation. Our biochemical characterization demonstrated that the sumoylation of TIP60 augments its acetyltransferase activity in vitro and in vivo. Thus, this study shed new light on the function and regulation of TIP60 activity in UV-irradiated DNA damage response.

Collaboration


Dive into the Changjiang Jin's collaboration.

Top Co-Authors

Avatar

Xuebiao Yao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yu Xue

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xinjiao Gao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jian Ren

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Longping Wen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xia Ding

Beijing University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zexian Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Du

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge