Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changyuan Wang is active.

Publication


Featured researches published by Changyuan Wang.


Drug Metabolism and Disposition | 2010

Pharmacokinetic interaction between JBP485 and cephalexin in rats.

Jian Zhang; Changyuan Wang; Qi Liu; Qiang Meng; Jian Cang; Huijun Sun; Ying Gao; Taiichi Kaku; Ke-Xin Liu

The purpose of this study was to investigate the pharmacokinetic mechanism of interaction between JBP485 (cyclo-trans-4-l-hydroxyprolyl-l-serine, a dipeptide) and cephalexin when they were coadministered in rats. The plasma concentrations of JBP485 and cephalexin were both decreased significantly after oral combination, but little difference was observed after simultaneous intravenous administration of the two agents, suggesting that the interaction target localized in the intestine during the absorption process. The uptake in everted intestinal sacs and absorption in jejunal perfusions of JBP485 and cephalexin were dramatically reduced after drug combination. When JBP485 and cephalexin were coadministered, both the decrease in accumulative renal excretion (81.9–68.1% of JBP485 and 91.8–74.5% of cephalexin) and in renal clearance (2.89–1.87 ml/min/kg JBP485 and 2.23–1.58 ml/min/kg cephalexin) indicated that transporter(s) other than H+/peptide transporter (PEPT) 2 are involved in the process of excretion. Probenecid could reduce renal excretion of JBP485 and cephalexin. Moreover, the decreased uptake of JBP485 with probenecid, p-aminohippuate, or benzylpenicillin in kidney slices could be explained by an inhibition in the kidney via organic anion transporters (OATs), at least in part. The accumulation of JBP485 in human (h) OAT1- or hOAT3-human embryonic kidney (HEK) 293 cells was greater than that in vector-HEK293 cells, and the uptake could be inhibited by probenecid. These findings further confirmed that the pharmacokinetic mechanism of the drug-drug interaction between JBP485 and cephalexin could be explained by their inhibition of the same transporters in the intestinal mucosa (PEPT1) and kidneys (PEPT2 and OATs). We provide the first evidence that JBP485 is not only a substrate of PEPTs but also is excreted through OATs.


Journal of Natural Products | 2013

Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition.

Lijuan Wang; Qiang Meng; Changyuan Wang; Qi Liu; Jinyong Peng; Xiaokui Huo; Huijun Sun; Xiaochi Ma; Kexin Liu

The purpose of this study was to investigate the ameliorating effect of dioscin (1) on multidrug resistance (MDR) in adriamycin (ADR)-resistant erythroleukemic cells (K562/adriamycin, K562/ADR) and to clarify the molecular mechanisms involved. High levels of multidrug resistance 1 (MDR1) mRNA and protein and reduced ADR retention were found in K562/ADR cells compared with parental cells (K562). Dioscin (1), a constituent of plants in the genus Discorea, significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in K562/ADR cells. MDR1 mRNA and protein suppression resulted in the subsequent recovery of intracellular drug accumulation. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by 1. Dioscin (1) reversed ADR-induced MDR by down-regulating MDR1 expression by a mechanism that involves the inhibition of the NF-κB signaling pathway. These findings provide evidence to support the further investigation of the clinical application of dioscin (1) as a chemotherapy adjuvant.


Peptides | 2011

Uptake, transport and regulation of JBP485 by PEPT1 in vitro and in vivo.

Zhihao Liu; Changyuan Wang; Qi Liu; Qiang Meng; Jian Cang; Lin Mei; Taiichi Kaku; Kexin Liu

Cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn(2+) or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.


European Journal of Pharmacology | 2008

Protective effect of JBP485 on concanavalin A-induced hepatocyte toxicity in primary cultured rat hepatocytes

Jingjing Wu; Changyuan Wang; Qi Liu; Tao Yang; Qinghao Zhang; Jinyong Peng; Ying Gao; Huijun Sun; Taiichi Kaku; Kexin Liu

Cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) is a dipeptide isolated from Laennec, and Laennec is a hydrolyzate of human placenta. Evidence has indicated that JBP485 exhibits potent anti-hepatitis activity. In this study, we investigated the protective effect and possible mechanisms of action of JBP485 in Concanavalin A (Con A)-induced hepatotoxicity in vitro. Two in vitro models were established. Model I: primary cultured female rat hepatocytes were only incubated with Con A (50 microg/ml); model II: co-culture system of hepatocytes and autologous splenic lymphocytes, both were stimulated with Con A (20 microg/ml). JBP485 (25 microM) was pre-incubated with the two models. Our results showed that JBP485 reduced cellular aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-alpha) leakage following the application of Con A in both of the models. Potential protective mechanisms were elucidated by measuring DNA fragmentations, immunocytochemistry and RT-PCR. We showed that DNA fragmentations in hepatocytes were attenuated in the JBP485 pre-incubated groups, and at the same time, immunocytochemistry and RT-PCR indicated that expression levels of caspase-3 protein and mRNA in the JBP485 treated groups were decreased compared with those in the untreated groups. Moreover, intercellular adhesion molecule-1 (ICAM-1) was also down-regulated by this dipeptide. The results indicate that JBP485 exhibits hepatoprotective effect through inhibition of hepatocyte apoptosis and ICAM-1 expression.


Toxicology and Applied Pharmacology | 2015

Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

Qiang Meng; Xinli Chen; Changyuan Wang; Qi Liu; Huijun Sun; Pengyuan Sun; Xiaokui Huo; Zhihao Liu; Jihong Yao; Kexin Liu

Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes.


European Journal of Pharmaceutical Sciences | 2013

Enhancement effect of P-gp inhibitors on the intestinal absorption and antiproliferative activity of bestatin.

Xiaokui Huo; Qi Liu; Changyuan Wang; Qiang Meng; Huijun Sun; Jinyong Peng; Xiaochi Ma; Kexin Liu

Bestatin is an immunomodulator with antitumor activity. This study was performed to investigate the effect of P-gp on the intestinal absorption and antiproliferative activity of bestatin. Our results showed that P-gp inhibitors significantly increased rat intestinal absorption of bestatin in vivo and in vitro. The net efflux ratio of bestatin was 2.2 across mock-/MDR1-MDCK cell monolayers and was decreased by P-gp inhibitors, indicating bestatin was a substrate of P-gp. Furthermore, the IC50 values of bestatin on U937 and K562 cells were decreased dramatically and the intracellular concentrations of bestatin were increased by incubation of cells with verapamil or Cyclosporin A. K562/ADR cells exhibited a higher IC50 value and a lower intracellular level of bestatin. The bestatin level in K562/ADR cells was partially restored by incubation with doxorubicin. However, P-gp and APN mRNA levels were not changed by bestatin. These results suggested that the intestinal absorption and accumulation in cancer cells for bestatin were limited by P-gp-mediated efflux. Additional attention should be paid to the alternative exposure of bestatin when bestatin was coadministered with drugs as P-gp substrates in clinic.


Pharmacological Research | 2015

Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70.

Meng Qi; Lingli Zheng; Yan Qi; Xu Han; Youwei Xu; Lina Xu; Lianhong Yin; Changyuan Wang; Yanyan Zhao; Huijun Sun; Kexin Liu; Jinyong Peng

We previously reported the effect of dioscin against hepatic ischemia/reperfusion injury (IRI) in rats. However, little is known concerning the role of dioscin in renal IRI. In the present study, rats were subjected to IRI and dioscin was intragastrically administered for seven consecutive days before surgery. In vitro models of hypoxia/reoxygenation were developed in NRK-52E and HK-2 cells, which were prophylactically treated with or without dioscin. The results showed that dioscin significantly decreased serum BUN and Cr levels, and markedly attenuated cell injury. Mechanistic studies showed that dioscin significantly increased HSP70 levels, decreased the levels of TLR4, MyD88, TRAF6, COX-2, JNK, ERK and p38 MAPK phosphorylation, suppressed the nuclear translocation of NF-κB and HMGB1, and subsequently decreased the mRNA levels of IL-1β, IL-6, TNF-α, ICAM-1 and IFN-γ. Moreover, HSP70 siRNA or TLR4 DNA reversed the nephroprotective effects of dioscin, while dioscin still significantly down-regulated the TLR4 signaling pathway. Furthermore, by inhibiting MyD88 with ST2825 (a MyD88 inhibitor), renal IRI was significantly attenuated, suggesting that the effect of dioscin against renal IRI depended on MyD88. Our results suggested that dioscin had a potent effect against renal IRI through suppressing the TLR4/MyD88 signaling pathway by up-regulating HSP70. These data provide new insights for investigating the natural product with the nephroprotective effect against IRI, which should be developed as a new therapeutic agent for the treatment of acute kidney injury in the future.


Food Chemistry | 2013

Biotransformation of imperatorin by Penicillium janthinellum. Anti-osteoporosis activities of its metabolites

Xia Lv; Dan Liu; Jie Hou; Pei-Pei Dong; Libin Zhan; Li Wang; Sa Deng; Changyuan Wang; Jihou Yao; Xiaohong Shu; Kexin Liu; Xiaochi Ma

Imperatorin (IMP) is a major constituent of many herbal medicines and possesses anti-osteoporosis activity. The present research work aimed to study the biotransformation processes of IMP and evaluated the anti-osteoporosis activity of the transformed metabolites. Among 18 strains of filamentous fungi screened, Penicillium janthinellum AS 3.510 exhibited good capability to metabolise IMP to the new derivatives. Ten transformed products were isolated and purified, and their structures were identified accurately based on spectroscopic data. Eight metabolites (2-8 and 10) were novel and previously unreported. The major biotransformation reactions involved hydroxylation of the prenyloxy side-chain and the lactone ring-opening reaction of furocoumarin skeleton. In addition, anti-osteoporosis activities of all products (1-10) were evaluated using MC3T3-E1 cells. The results showed that products 5 and 8 had the best bioactivities in increasing MC3T3-E1 cell growth. These products could be used in future therapeutic regimens for treating osteoporosis.


Journal of Pharmacy and Pharmacology | 2009

Protective effect of JBP485 on concanavalin A-induced liver injury in mice

Tao Yang; Jingjing Wu; Changyuan Wang; Qi Liu; Xiaochi Ma; Jinyong Peng; Taiichi Kaku; Kexin Liu

Objectives Cyclo‐trans‐4‐L‐hydroxyprolyl‐L‐serine (JBP485) was first isolated from Laennec (hydrolysate of human placenta). We thought it valuable to clarify the antihepatitis molecular mechanism of JBP485 to develop a new oral anti‐hepatitis drug.


Drug Metabolism and Disposition | 2013

Involvement of Organic Anion-Transporting Polypeptides in the Hepatic Uptake of Dioscin in Rats and Humans

Aijie Zhang; Changyuan Wang; Qi Liu; Qiang Meng; Jinyong Peng; Huijun Sun; Xiaochi Ma; Xiaokui Huo; Kexin Liu

The objective of this study was to clarify the mechanism underlying hepatic uptake of dioscin (diosgenyl 2,4-di-O-a-L-rhamnopyranosyl-p-D-glucopyranoside), an herbal ingredient with antihepatitis activity, in rats and humans. The liver uptake index (LUI) in vivo, perfused rat liver in situ, rat liver slices, isolated rat hepatocytes, and human organic anion-transporting polypeptide (OATP)–transfected cells in vitro were used to evaluate hepatic uptake of dioscin. Values of 11.9% ± 1.6% and 15.0% ± 0.9% of dose for uptake of dioscin were observed by LUI in vivo and perfused rat livers in situ, respectively. The time course of dioscin uptake by rat liver slices was temperature-dependent. Uptake of dioscin by rat liver slices and isolated rat hepatocytes was inhibited significantly by Oatp modulators, such as ibuprofen (Oatp1a1 inhibitor), digoxin (Oatp1a4 substrate), and glycyrrhizic acid (Oatp1b2 inhibitor), but not by TEA or p-aminohippurate. Uptake of dioscin in rat hepatocytes and OATP1B3-human embryonic kidney (HEK) 293 cells indicated a saturable process with a Km of 3.75 ± 0.51 μM and 2.08 ± 0.27 μM, respectively. (–)-Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited transport of dioscin in OATP1B3-HEK293 cells. However, transcellular transport of dioscin in OATP1B1- or OATP1B1/multidrug resistance-associated protein 2–Madin-Darby canine kidney strain II cells was not observed. These results indicate that hepatic uptake of dioscin is involved in OATP1B3 in humans, and multiple Oatps might participate in this process in rats.

Collaboration


Dive into the Changyuan Wang's collaboration.

Top Co-Authors

Avatar

Kexin Liu

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Huijun Sun

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Qiang Meng

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Qi Liu

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Jinyong Peng

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhihao Liu

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaokui Huo

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Ma

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Pengyuan Sun

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaochi Ma

Dalian Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge