Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaochi Ma is active.

Publication


Featured researches published by Xiaochi Ma.


Molecular Nutrition & Food Research | 2013

Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells

Xiaohan Zhai; Musen Lin; Feng Zhang; Yan Hu; Xiaomei Xu; Yubing Li; Kexin Liu; Xiaochi Ma; Xiaofeng Tian; Jihong Yao

SCOPE Flavonoids have well-known antioxidant, anti-inflammatory, and anti-cancer activities. Isoflavone genistein is considered a potent antioxidant agent against oxidative stress. Although several mechanisms have been proposed, a clear antioxidant mechanism of genistein is still remained to be answered. METHODS AND RESULTS In this study, we focused on the concerted effects on expression of Nrf2 and phase II enzyme pathway components. Transient transfection assays, RT-PCR and immunoblot analysis were performed to study its molecular mechanisms of action. In Caco-2 cells, treatment with genistein markedly attenuated H(2)O(2) -induced peroxide formation; this amelioration was reversed by buthionine sulfoximine(GCLC inhibitor) and zinc protoporphyrin(HO-1 inhibitor). Genistein increased HO-1 and GCLC mRNA and protein expression. Genistein treatment activated the ERK1/2 and PKC signaling pathway; therefore increased Nrf2 mRNA and protein expression. The roles of the ERK1/2 and PKC signaling pathway were determined using PD98059 (ERK1/2 inhibitor) and GF109203X (PKC inhibitor) and RNA interference directed against Nrf2. Both inhibitors and siNrf2 abolished genistein-induced HO-1 and GCLC protein expression. These results suggest the involvement of ERK1/2, PKC, and Nrf2 in inducing HO-1 and GCLC by genistein. CONCLUSION Our studies show that genistein up-regulated HO-1 and GCLC expression through the EKR1/2 and PKC /Nrf2 pathways during oxidative stress.


Drug Metabolism and Disposition | 2011

Comparative Metabolism of Cinobufagin in Liver Microsomes from Mouse, Rat, Dog, Minipig, Monkey and Human

Xiaochi Ma; Jing Ning; Guang-Bo Ge; Si-Cheng Liang; Xiuli Wang; Bao-Jing Zhang; Shan-Shan Huang; Jing-Kui Li; Ling Yang

Cinobufagin (CB), a major bioactive component of the traditional Chinese medicine Chansu, has been reported to have potent antitumor activity. In this study, in vitro metabolism of CB among species was compared with respect to metabolic profiles, enzymes involved, and catalytic efficiency by using liver microsomes from human (HLM), mouse (MLM), rat (RLM), dog (DLM), minipig (PLM), and monkey (CyLM). Significant species differences in CB metabolism were revealed. In particular, species-specific deacetylation and epimerization combined with hydroxylation existed in RLM, whereas hydroxylation was a major pathway in HLM, MLM, DLM, PLM, and CyLM. Two monohydroxylated metabolites of CB in human and animal species were identified as 1α-hydroxylcinobufagin and 5β-hydroxylcinobufagin by using liquid chromatography-mass spectrometry and two-dimensional NMR techniques. CYP3A4 was identified as the main isoform involved in CB hydroxylation in HLM on the basis of the chemical inhibition studies and screen assays with recombinant human cytochrome P450s. Furthermore, ketoconazole, a specific inhibitor of CYP3A, strongly inhibited CB hydroxylation in MLM, DLM, PLM, and CyLM, indicating that CYP3A was responsible for CB hydroxylation in these animal species. The apparent substrate affinity and catalytic efficiency for 1α- and 5β-hydroxylation of CB in liver microsomes from various species were also determined. PLM appears to have Km and total intrinsic clearance value (Vmax/Km) similar to those for HLM, and the total microsomal intrinsic clearance values for CB obeyed the following order: mouse > dog > monkey > human > minipig. These findings provide vital information to better understand the metabolic behaviors of CB among various species.


Journal of Natural Products | 2013

Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition.

Lijuan Wang; Qiang Meng; Changyuan Wang; Qi Liu; Jinyong Peng; Xiaokui Huo; Huijun Sun; Xiaochi Ma; Kexin Liu

The purpose of this study was to investigate the ameliorating effect of dioscin (1) on multidrug resistance (MDR) in adriamycin (ADR)-resistant erythroleukemic cells (K562/adriamycin, K562/ADR) and to clarify the molecular mechanisms involved. High levels of multidrug resistance 1 (MDR1) mRNA and protein and reduced ADR retention were found in K562/ADR cells compared with parental cells (K562). Dioscin (1), a constituent of plants in the genus Discorea, significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in K562/ADR cells. MDR1 mRNA and protein suppression resulted in the subsequent recovery of intracellular drug accumulation. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by 1. Dioscin (1) reversed ADR-induced MDR by down-regulating MDR1 expression by a mechanism that involves the inhibition of the NF-κB signaling pathway. These findings provide evidence to support the further investigation of the clinical application of dioscin (1) as a chemotherapy adjuvant.


Journal of Natural Products | 2008

Microbial transformation of cinobufagin by Syncephalastrum racemosum.

Xiaochi Ma; Xiu-lan Xin; Ke-xin Liu; Jian Han; Dean Guo

Microbial transformation of a cytotoxic bufadienolide, cinobufagin (1), was performed by Syncephalastrum racemosum. The six metabolites obtained were identified as 7beta-hydroxycinobufagin ( 2), 12beta-hydroxycinobufagin (3), cinobufotalin (4), 5,12beta-dihydroxycinobufagin (5), 4beta,11alpha-dihydroxycinobufagin (6), and 4beta,12alpha-dihydroxycinobufagin (7), respectively, on the basis of spectroscopic studies. Metabolites 2 and 5-7 were characterized as new compounds, and 2-7 proved to be cytotoxic against Bel-7402 human hepatoma cells.


Journal of Natural Products | 2015

Protostane Triterpenoids from the Rhizome of Alisma orientale Exhibit Inhibitory Effects on Human Carboxylesterase 2

Zhen-Peng Mai; Kun Zhou; Guang-Bo Ge; Chao Wang; Xiaokui Huo; Pei-Pei Dong; Sa Deng; Bao-Jing Zhang; Hou-Li Zhang; Shan-Shan Huang; Xiaochi Ma

Twelve new and 10 known protostane triterpenoids were isolated from the rhizome of Alisma orientale. Their structures were elucidated based on physical data analyses, including UV, HRESIMS, NMR experiments ((1)H, (13)C NMR, (1)H-(1)H COSY, HSQC, HMBC, and NOESY), and induced electronic circular dichroism. New compounds 1-12 were classified as protostanes (1-10), 29-norprotostane (11), and 24-norprotostane (12) by structure analyses. Furthermore, the inhibitory effects on human carboxylesterases (hCE-1, hCE-2) of compounds 1-22 were evaluated. Compounds 2, 6, 9, and 11 showed moderate inhibitory activities and were selective toward hCE-2 enzymes, with IC50 values of 8.68, 4.72, 4.58, and 2.02 μM, respectively. The inhibition kinetics of compound 11 toward hCE-2 were established, and the Ki value was determined as 1.76 μM using a mixed inhibition model. The interaction of bioactive compound 11 with hCE-2 was shown using molecular docking.


Scientific Reports | 2015

Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease.

Wenjing Zeng; Wen Shan; Lili Gao; Dongyan Gao; Yan Hu; Guangzhi Wang; Ning Zhang; Zhenlu Li; Xiaofeng Tian; Wei Xu; Jinyong Peng; Xiaochi Ma; Jihong Yao

The inflammatory mediator high-mobility group box 1 (HMGB1) plays a critical role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the regulation of HMGB1 in NAFLD, particularly through sirtuin 1 (SIRT1), remains unclear. In this study, we investigated the role of SIRT1-mediated inhibition of HMGB1 release in NAFLD and the effect of salvianolic acid B (SalB), which is a water-soluble phenolic acid extracted from Radix Salvia miltiorrhiza, on NAFLD through SIRT1/HMGB1 signaling. In vivo, SalB treatment significantly attenuated high-fat diet (HFD)-induced liver damage, hepatic steatosis, and inflammation. Importantly, SalB significantly inhibited HMGB1 nuclear translocation and release, accompanied by SIRT1 elevation. In HepG2 cells, palmitic acid (PA)-induced pro-inflammatory cytokines release were blocked by HMGB1 small interfering RNA (siRNA) transfection. Moreover, pharmacological SIRT1 inhibition by Ex527 induced HMGB1 translocation and release, whereas SIRT1 activation by resveratrol or SalB reversed this trend. SIRT1 siRNA abrogated the SalB-mediated inhibition of HMGB1 acetylation and release, suggesting that SalB-mediated protection occurs by SIRT1 targeting HMGB1 for deacetylation. We are the first to demonstrate that the SIRT1/HMGB1 pathway is a key therapeutic target for controlling NAFLD inflammation and that SalB confers protection against HFD- and PA-induced hepatic steatosis and inflammation through SIRT1-mediated HMGB1 deacetylation.


European Journal of Pharmaceutical Sciences | 2013

Enhancement effect of P-gp inhibitors on the intestinal absorption and antiproliferative activity of bestatin.

Xiaokui Huo; Qi Liu; Changyuan Wang; Qiang Meng; Huijun Sun; Jinyong Peng; Xiaochi Ma; Kexin Liu

Bestatin is an immunomodulator with antitumor activity. This study was performed to investigate the effect of P-gp on the intestinal absorption and antiproliferative activity of bestatin. Our results showed that P-gp inhibitors significantly increased rat intestinal absorption of bestatin in vivo and in vitro. The net efflux ratio of bestatin was 2.2 across mock-/MDR1-MDCK cell monolayers and was decreased by P-gp inhibitors, indicating bestatin was a substrate of P-gp. Furthermore, the IC50 values of bestatin on U937 and K562 cells were decreased dramatically and the intracellular concentrations of bestatin were increased by incubation of cells with verapamil or Cyclosporin A. K562/ADR cells exhibited a higher IC50 value and a lower intracellular level of bestatin. The bestatin level in K562/ADR cells was partially restored by incubation with doxorubicin. However, P-gp and APN mRNA levels were not changed by bestatin. These results suggested that the intestinal absorption and accumulation in cancer cells for bestatin were limited by P-gp-mediated efflux. Additional attention should be paid to the alternative exposure of bestatin when bestatin was coadministered with drugs as P-gp substrates in clinic.


Food Chemistry | 2013

Biotransformation of imperatorin by Penicillium janthinellum. Anti-osteoporosis activities of its metabolites

Xia Lv; Dan Liu; Jie Hou; Pei-Pei Dong; Libin Zhan; Li Wang; Sa Deng; Changyuan Wang; Jihou Yao; Xiaohong Shu; Kexin Liu; Xiaochi Ma

Imperatorin (IMP) is a major constituent of many herbal medicines and possesses anti-osteoporosis activity. The present research work aimed to study the biotransformation processes of IMP and evaluated the anti-osteoporosis activity of the transformed metabolites. Among 18 strains of filamentous fungi screened, Penicillium janthinellum AS 3.510 exhibited good capability to metabolise IMP to the new derivatives. Ten transformed products were isolated and purified, and their structures were identified accurately based on spectroscopic data. Eight metabolites (2-8 and 10) were novel and previously unreported. The major biotransformation reactions involved hydroxylation of the prenyloxy side-chain and the lactone ring-opening reaction of furocoumarin skeleton. In addition, anti-osteoporosis activities of all products (1-10) were evaluated using MC3T3-E1 cells. The results showed that products 5 and 8 had the best bioactivities in increasing MC3T3-E1 cell growth. These products could be used in future therapeutic regimens for treating osteoporosis.


Drug Metabolism and Disposition | 2013

Involvement of Organic Anion-Transporting Polypeptides in the Hepatic Uptake of Dioscin in Rats and Humans

Aijie Zhang; Changyuan Wang; Qi Liu; Qiang Meng; Jinyong Peng; Huijun Sun; Xiaochi Ma; Xiaokui Huo; Kexin Liu

The objective of this study was to clarify the mechanism underlying hepatic uptake of dioscin (diosgenyl 2,4-di-O-a-L-rhamnopyranosyl-p-D-glucopyranoside), an herbal ingredient with antihepatitis activity, in rats and humans. The liver uptake index (LUI) in vivo, perfused rat liver in situ, rat liver slices, isolated rat hepatocytes, and human organic anion-transporting polypeptide (OATP)–transfected cells in vitro were used to evaluate hepatic uptake of dioscin. Values of 11.9% ± 1.6% and 15.0% ± 0.9% of dose for uptake of dioscin were observed by LUI in vivo and perfused rat livers in situ, respectively. The time course of dioscin uptake by rat liver slices was temperature-dependent. Uptake of dioscin by rat liver slices and isolated rat hepatocytes was inhibited significantly by Oatp modulators, such as ibuprofen (Oatp1a1 inhibitor), digoxin (Oatp1a4 substrate), and glycyrrhizic acid (Oatp1b2 inhibitor), but not by TEA or p-aminohippurate. Uptake of dioscin in rat hepatocytes and OATP1B3-human embryonic kidney (HEK) 293 cells indicated a saturable process with a Km of 3.75 ± 0.51 μM and 2.08 ± 0.27 μM, respectively. (–)-Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited transport of dioscin in OATP1B3-HEK293 cells. However, transcellular transport of dioscin in OATP1B1- or OATP1B1/multidrug resistance-associated protein 2–Madin-Darby canine kidney strain II cells was not observed. These results indicate that hepatic uptake of dioscin is involved in OATP1B3 in humans, and multiple Oatps might participate in this process in rats.


Toxicology and Applied Pharmacology | 2013

JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

Xinjin Guo; Qiang Meng; Qi Liu; Changyuan Wang; Huijun Sun; Jinyong Peng; Xiaochi Ma; Taiichi Kaku; Kexin Liu

We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. To determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats.

Collaboration


Dive into the Xiaochi Ma's collaboration.

Top Co-Authors

Avatar

Xiaokui Huo

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Chao Wang

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Baojing Zhang

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiangge Tian

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Sa Deng

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Kexin Liu

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Changyuan Wang

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Cheng-Peng Sun

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhenlong Yu

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Lei Feng

Dalian Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge