Chantra Tongcumpou
Chulalongkorn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chantra Tongcumpou.
Journal of Hazardous Materials | 2010
Seelawut Damrongsiri; Chantra Tongcumpou; P. Weschayanwiwat; David A. Sabatini
The harmful effects of organometallic compounds and their metabolites on the environment and human health require the development of more effective remediation methods. Surfactant enhanced remediation has been considered as a potential method for the removal of organometallic compounds; however, additional understanding is needed about the solubilization processes of these compounds. The surfactant enhanced solubilization of dibutyltin dichloride (DBT), an organometallic compound, was the focus of this research. In addition, the synergistic effects of DBT solubilization in perchloroethylene (PCE) and decane mixtures were evaluated. The results indicate that PCE and decane were solubilized into the core of these surfactant micelles in both single and mixed oil systems. DBT solubilization was limited when DBT alone was present (single oil system), and the nature of the solubilization isotherm suggests that DBT solubilization tended to occur near the micelle surface in a single oil system. DBT solubilization was found to increase when present in the PCE and decane oil mixture. PCE and decane may have facilitated the solubilization of DBT because they were solubilized in the micelle core. From this study, it may be concluded that the DBT behaves like polar oil such as dodecanol, having properties of a polar organic compound.
Journal of Hazardous Materials | 2013
Seelawut Damrongsiri; Chantra Tongcumpou; David A. Sabatini
Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique.
Environmental Science: Processes & Impacts | 2013
Pensiri Akkajit; Thomas M. DeSutter; Chantra Tongcumpou
Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013
Jaruwan Talawat; David A. Sabatini; Chantra Tongcumpou
This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs.
Journal of Hazardous Materials | 2017
Witchaya Rongsayamanont; Suwat Soonglerdsongpha; Nichakorn Khondee; Onruthai Pinyakong; Chantra Tongcumpou; David A. Sabatini
Solvent-free dispersants for crude oil spills were formulated based on the hydrophilic-lipophilic deviation (HLD) concept and using lipopeptides from Bacillus sp. GY19. The lipopeptides were recovered and concentrated from cell-free broth by foam fractionation and freeze-drying. They had good surface activity under varying temperatures, pH and NaCl levels. Moreover, the lipopeptides had low toxicity to copepods (LC50 1174mg/L) and whiteleg shrimp (LC50 1050mg/L). The characteristic curvature (Cc) of the lipopeptides showed that they were more hydrophobic (Cc 4.93) than sodium dihexyl sulfosuccinate (SDHS, Cc -0.92). The HLD equation was used to calculate the lipopeptide and the SDHS fractions in the dispersant formulations according to the equivalent alkane carbon number (EACN) of hydrocarbons and seawater salinity. The molar fraction of lipopeptides increased with increasing EACN. The lipopeptide-SDHS mixtures formed microemulsion Type III with specific hydrocarbons and crude oils. Oil displacement and baffled flask tests showed that the formulations reduced the interfacial tension and solubilized crude oil in the water column at higher efficiency than commercial dispersants or lipopeptides alone. In summary, the effectiveness of the lipopeptide-based dispersant corresponded to the optimal HLD.
Communications in Soil Science and Plant Analysis | 2016
Pensiri Akkajit; Chantra Tongcumpou
ABSTRACT Crop wastes or by-products can have the potential to be used as effective amendments to improve agricultural soil quality and/or crop yields subject to appropriate screening and testing. Sugarcane (Saccharum officinarum L.) waste by-products from an ethanol production plant, including boiler ash, filter cake, and vinasse, were applied as soil amendments at 5%, 10%, 20%, and 40% (w/w) to study the relationship between pH and organic matter (OM) on cadmium (Cd) bioavailability and adsorption via organic matter using the Cd sequential extraction procedure. Soil pH was significantly affected by aging of the treatment with boiler ash, filter cake, and vinasse. At the end of the experiment, the Cd concentrations with all treatments were mainly released in the first two extraction steps of the sequential procedure, i.e., most mobile and easily mobilized fractions. Pearson correlation analyses revealed a negative relationship between pH and bioavailable Cd and between OM and oxidizable Cd. The pH reduction induced by the amendments was a major factor affecting soil Cd bioavailability. The effect of OM on Cd fractionation could not be clearly observed and interpreted in this study.
Journal of the Science of Food and Agriculture | 2017
Naphatsarnan Phasukarratchai; Seelawut Damrongsiri; Chantra Tongcumpou
BACKGROUND Phorbol esters (PEs), found in Jatropha curcas crude oil (JCO) and J. curcas pressed seeds (JPS), are known as bioactive compounds in agricultural and pharmaceutical applications. The degradation rates of PEs in JCO and JPS under various conditions is important for the utilisation of PEs. Thus the objective of this study was to determine the PE degradation rates in JCO and JPS under different storage conditions. RESULTS PE degradation rates were found to be first-order reactions. The slowest degradation rate was at 0.9 × 10-3 d-1 for both JCO and JPS unexposed to light at 4 °C. Light intensity (1097 lx and 4690 lx, representing diffused sunlight and fluorescent lighting, respectively) and temperature (25 to 35 °C) were the significant degradation factors. Light exposure led to 280% to 380% higher degradation rates in JCO than in JPS due to light penetration through the transparent oil. Dried and sterilised JPS showed an 80% to 90% lower PE degradation rate than untreated JPS under all storage conditions since biodegradation was assembly limited. CONCLUSION The PEs were unstable under the studied conditions, especially when exposed to light and room temperature. To protect against PE degradation, a material should be stored in a light-protected container and below 4 °C.
Geoderma | 2010
Pensiri Akkajit; Chantra Tongcumpou
Journal of Surfactants and Detergents | 2003
Chantra Tongcumpou; Edgar J. Acosta; L. B. Quencer; A. F. Joseph; John F. Scamehorn; David A. Sabatini; Sumaeth Chavadej; Nantaya Yanumet
Journal of Surfactants and Detergents | 2003
Chantra Tongcumpou; Edgar J. Acosta; L. B. Quencer; A. F. Joseph; John F. Scamehorn; David A. Sabatini; Sumaeth Chavadej; Nantaya Yanumet