Seelawut Damrongsiri
Chulalongkorn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seelawut Damrongsiri.
Journal of Hazardous Materials | 2010
Seelawut Damrongsiri; Chantra Tongcumpou; P. Weschayanwiwat; David A. Sabatini
The harmful effects of organometallic compounds and their metabolites on the environment and human health require the development of more effective remediation methods. Surfactant enhanced remediation has been considered as a potential method for the removal of organometallic compounds; however, additional understanding is needed about the solubilization processes of these compounds. The surfactant enhanced solubilization of dibutyltin dichloride (DBT), an organometallic compound, was the focus of this research. In addition, the synergistic effects of DBT solubilization in perchloroethylene (PCE) and decane mixtures were evaluated. The results indicate that PCE and decane were solubilized into the core of these surfactant micelles in both single and mixed oil systems. DBT solubilization was limited when DBT alone was present (single oil system), and the nature of the solubilization isotherm suggests that DBT solubilization tended to occur near the micelle surface in a single oil system. DBT solubilization was found to increase when present in the PCE and decane oil mixture. PCE and decane may have facilitated the solubilization of DBT because they were solubilized in the micelle core. From this study, it may be concluded that the DBT behaves like polar oil such as dodecanol, having properties of a polar organic compound.
Environmental Science and Pollution Research | 2016
Seelawut Damrongsiri; Sujitra Vassanadumrongdee; Puntita Tanwattana
Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.
Journal of Hazardous Materials | 2013
Seelawut Damrongsiri; Chantra Tongcumpou; David A. Sabatini
Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique.
Environmental Science and Pollution Research | 2018
Seelawut Damrongsiri
The change in environmental conditions during the transportation of contaminated soil and sediment was expected to affect the transformation of heavy metal fractionation. This study disclosed the serious contamination of copper (Cu), lead (Pb), and zinc (Zn) in the sewer sediment of an e-waste dismantling community in Thailand which may be caused by flushed contaminated soil and e-waste fragments. Two environmental conditions were simulated to observe the transformation of heavy metal fractionation. The anoxic sewer condition was induced using high substrate and sulfate in a closed container. The aeration of anoxic contaminated sediment was applied to simulate the transformation to an oxidative environment. The BCR sequential extraction was applied for heavy metal fractionation in this study. The study results exhibited that when heavy metal contaminated soil was transferred into this induced anoxic condition, fractionation was redistributed based on the chemical change of system that tends to be associated into F3 (oxidizable fraction) > F2 (reducible fraction) > F1 (acid soluble/exchangeable fraction). Cu exhibited the outstanding capability association to F3. The iron sulfide was not observed as usual due to its lower capability than Cu, Pb, and Zn. When contaminated sediment was transported to a more oxidative environment, the heavy metals fractionation would be redistributed again among those new environment media. It is noteworthy that F3 of Cu was stable even in oxic conditions. F2 of Fe was not developed by this oxic condition, possibly because its dehydration process was limited. The redistribution under an oxic environment became F1 > F2 > F3 indicating their more available form. This transformation was imperative and should be taken into account in heavy metal contaminated site management and control.
Journal of the Science of Food and Agriculture | 2017
Naphatsarnan Phasukarratchai; Seelawut Damrongsiri; Chantra Tongcumpou
BACKGROUND Phorbol esters (PEs), found in Jatropha curcas crude oil (JCO) and J. curcas pressed seeds (JPS), are known as bioactive compounds in agricultural and pharmaceutical applications. The degradation rates of PEs in JCO and JPS under various conditions is important for the utilisation of PEs. Thus the objective of this study was to determine the PE degradation rates in JCO and JPS under different storage conditions. RESULTS PE degradation rates were found to be first-order reactions. The slowest degradation rate was at 0.9 × 10-3 d-1 for both JCO and JPS unexposed to light at 4 °C. Light intensity (1097 lx and 4690 lx, representing diffused sunlight and fluorescent lighting, respectively) and temperature (25 to 35 °C) were the significant degradation factors. Light exposure led to 280% to 380% higher degradation rates in JCO than in JPS due to light penetration through the transparent oil. Dried and sterilised JPS showed an 80% to 90% lower PE degradation rate than untreated JPS under all storage conditions since biodegradation was assembly limited. CONCLUSION The PEs were unstable under the studied conditions, especially when exposed to light and room temperature. To protect against PE degradation, a material should be stored in a light-protected container and below 4 °C.
Journal of Environmental Management | 2017
Seelawut Damrongsiri
Demolition waste consisting of cement paste, lightweight concrete and bricks is a worthless material generated by a growing city. However, research suggests that it may be applied as an alternative heavy metal immobilising agent. The diverse characteristics of demolition waste were examined. Cadmium was selected as there presentative heavy metal to investigate demolition waste adsorption capacity. The solid-liquid distribution coefficients (Kd) were observed. The adsorption isotherms were applied to investigate adsorption characteristics. Carbon content in the demolition waste materials was low and mainly in inorganic form. Cement paste and lightweight concrete had an alkaline pH with very high acid neutralising capacity (ANC). The surface area and cation exchange capacity (CEC) of these materials were low. Cement paste possessed the highest pH, ANC, CEC and surface area, with the highest Kd; however, its specific surface area and CEC were low compared to activated carbon and organic material. The adsorption isotherms indicated surface heterogeneity with favourable conditions for adsorption and the mean free energy suggested physisorption with multilayer formation. The Kd values of the tested materials were comparable to soil which was not effective in immobilising heavy metal via adsorption mechanisms. However, the high pH and ANC of cement paste and lightweight concrete can improve the heavy metal adsorption capacity of soil and soil ANC that help prevents and controls leaching by heavy metals.
Chemosphere | 2007
Ria A. Yngard; Seelawut Damrongsiri; Khemarath Osathaphan; Virender K. Sharma
Industrial Crops and Products | 2017
Naphatsarnan Phasukarratchai; Seelawut Damrongsiri; Chantra Tongcumpou
Journal of Surfactants and Detergents | 2016
Naphatsarnan Phasukarratchai; Seelawut Damrongsiri; Chantra Tongcumpou
International Journal of Recycling of Organic Waste in Agriculture | 2018
Lada Mathurasa; Seelawut Damrongsiri