Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chao Mao is active.

Publication


Featured researches published by Chao Mao.


Scientific Reports | 2016

The ratio of FoxA1 to FoxA2 in lung adenocarcinoma is regulated by LncRNA HOTAIR and chromatin remodeling factor LSH

Ranran Wang; Ying Shi; Ling Chen; Yiqun Jiang; Chao Mao; Bin Yan; Shuang Liu; Bin Shan; Yongguang Tao; Xiang Wang

The lncRNA HOTAIR is a critical regulator of cancer progression. Chromatin remodeling factor LSH is critical for normal development of plants and mammals. However, the underlying mechanisms causing this in cancer are not entirely clear. The functional diversification of the FOXA1 and FOXA2 contributes to the target genes during evolution and carcinogenesis. Little is known about the ratio of FOXA1 to FOXA2 in cancer. We here found that both HOTAIR and LSH overexpression was significantly correlated with poor survival in patients with lung adenocarcinoma cancer (ADC). Also, the ratio of FOXA1 and FOXA2 is linked with poor survival in patients with lung ADC. HOTAIR regulates the ratio of FOXA1 to FOXA2 and migration and invasion. HOTAIR and the ratio of FOXA1 to FOXA2 are negatively correlated. HOTAIR knockdown inhibits migration and invasion. HOTAIR is associated with LSH, and this association linked with the binding of LSH in the promoter of FOXA1, not FOXA2. Targeted inhibition of HOTAIR suppresses the migratory and invasive properties. These data suggest that HOTAIR is an important mediator of the ratio of FOXA1 and FOXA2 and LSH involves in, and suggest that HOTAIR inhibition may represent a promising therapeutic option for suppressing lung ADC progression.


Cancer Research | 2016

Chromatin Remodeling Factor LSH Drives Cancer Progression by Suppressing the Activity of Fumarate Hydratase

Xiaozhen He; Bin Yan; Shuang Liu; Jiantao Jia; Weiwei Lai; Xing Xin; Can-e Tang; Dixian Luo; Tan Tan; Yiqun Jiang; Ying Shi; Yating Liu; Desheng Xiao; Ling Chen; Shao Liu; Chao Mao; Gang Yin; Yan Cheng; Jia Fan; Ya Cao; Kathrin Muegge; Yongguang Tao

Chromatin modification is pivotal to the epithelial-mesenchymal transition (EMT), which confers potent metastatic potential to cancer cells. Here, we report a role for the chromatin remodeling factor lymphoid-specific helicase (LSH) in nasopharyngeal carcinoma (NPC), a prevalent cancer in China. LSH expression was increased in NPC, where it was controlled by the Epstein-Barr virus-encoded protein LMP1. In NPC cells in vitro and in vivo, LSH promoted cancer progression in part by regulating expression of fumarate hydratase (FH), a core component of the tricarboxylic acid cycle. LSH bound to the FH promoter, recruiting the epigenetic silencer factor G9a to repress FH transcription. Clinically, we found that the concentration of TCA intermediates in NPC patient sera was deregulated in the presence of LSH. RNAi-mediated silencing of FH mimicked LSH overexpression, establishing FH as downstream mediator of LSH effects. The TCA intermediates α-KG and citrate potentiated the malignant character of NPC cells, in part by altering IKKα-dependent EMT gene expression. In this manner, LSH furthered malignant progression of NPC by modifying cancer cell metabolism to support EMT. Cancer Res; 76(19); 5743-55. ©2016 AACR.


Oncotarget | 2016

LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway

Jiantao Jia; Ying Shi; Bin Yan; Deshen Xiao; Weiwei Lai; Yu Pan; Yiqun Jiang; Ling Chen; Chao Mao; Jian Zhou; Sichuan Xi; Ya Cao; Shuang Liu; Yongguang Tao

Basal cell carcinomas (BCC) of the skin are the most common of human cancers. The noncanonical NF-κB pathway is dependent on IKKα. However, the role of IKKα in BCC has not been elucidated. We show here that IKKα is expressed in the nucleus in BCC and non-malignant diseases. Nuclear IKKα could directly bind to the promoters of inflammation factors and LGR5, a stem cell marker, in turn, upregulating LGR5 expression through activation of STAT3 signaling pathway during cancer progression. Activation of STAT3 signaling pathway contributes LGR5 expression in dependent of IKKα after the interplay between STAT3 and IKKα. Meanwhile knockdown of IKKα inhibits tumor growth and transition of epithelial stage to mescheme stage. Taken together, we demonstrate that IKKα functions as a bone fide chromatin regulator in BCC, whose promoted expression contributes to oncogenic transformation via promoting expression stemness- and inflammatory- related genes. Our finding reveals a novel viewpoint for how IKKα may involve in BCCs tumor progression in the inflammatory microenvironment.


Theranostics | 2017

Chromatin Remodeling Factor LSH is Upregulated by the LRP6-GSK3β-E2F1 Axis Linking Reversely with Survival in Gliomas.

Desheng Xiao; Jun Huang; Yu Pan; Hao Li; Chunyan Fu; Chao Mao; Yan Cheng; Ying Shi; Ling Chen; Yiqun Jiang; Rui Yang; Yating Liu; Jianhua Zhou; Ya Cao; Shuang Liu; Yongguang Tao

The signaling pathway-based stratification in chromatin modification could predict clinical outcome more reliably than morphology-alone-based classification schemes in gliomas. Here we reported a role of the chromatin-remodeling factor lymphoid-specific helicase (LSH) in gliomas. Among astrocytomas of grade I to III and glioblastoma of grade IV, LSH were almost completely expressed in all cases, and strongly correlated with astrocytomas progression and poor prognosis of patients with astrocytomas and glioblastoma. Ectopic expression of LSH promoted tumor formation. Up-regulation of transcription factor E2F1 in astrocytomas and glioblastoma was associated with the progression of gliomas and correlated with LSH expression. Chromatin immunoprecipitation (ChIP) analysis showed transcription factor E2F1 were recruited to the promoter region of LSH, and depletion of E2F1 decreased LSH expression and cell growth. Moreover, glycogen synthase kinase-3β (GSK-3β), an intact complex of E2F1, were also highly expressed in astrocytomas and linked with astrocytomas progression and poor prognosis of patients with astrocytomas and glioblastoma. Inhibition of GSK3β increased the enrichment of E2F1 to the LSH promoter, in turn, increased LSH expression. Lipoprotein receptor-related protein 6 (LRP6), an upstream regulator of GSK3β signaling pathway, was highly expressed in gliomas. Knockdown of LRP6 decreased LSH expression through decrease of recruitment of E2F1 to the LSH promoter leading to inhibition of cell growth. Taken together, this study reveals evidence demonstrating a mechanism by which upregulated promoted gliomas. A mechanistic link between LSH expression and activation of the LPR6/ GSK3β/E2F1 axis in gliomas illustrates a novel role of LSH in malignant astrocytomas and glioblastoma.


Theranostics | 2017

EGLN1/c-Myc Induced Lymphoid-Specific Helicase Inhibits Ferroptosis through Lipid Metabolic Gene Expression Changes

Yiqun Jiang; Chao Mao; Rui Yang; Bin Yan; Ying Shi; Xiaoli Liu; Weiwei Lai; Yating Liu; Xiang Wang; Desheng Xiao; Hu Zhou; Yan Cheng; Fenglei Yu; Ya Cao; Shuang Liu; Qin Yan; Yongguang Tao

Ferroptosis is a newly discovered form of non-apoptotic cell death in multiple human diseases. However, the epigenetic mechanisms underlying ferroptosis remain poorly defined. First, we demonstrated that lymphoid-specific helicase (LSH), which is a DNA methylation modifier, interacted with WDR76 to inhibit ferroptosis by activating lipid metabolism-associated genes, including GLUT1, and ferroptosis related genes SCD1 and FADS2, in turn, involved in the Warburg effect. WDR76 targeted these genes expression in dependent manner of LSH and chromatin modification in DNA methylation and histone modification. These effects were dependent on iron and lipid reactive oxygen species. We further demonstrated that EGLN1 and c-Myc directly activated the expression of LSH by inhibiting HIF-1α. Finally, we demonstrated that LSH functioned as an oncogene in lung cancer in vitro and in vivo. Therefore, our study elucidates the molecular basis of the c-Myc/EGLN1-mediated induction of LSH expression that inhibits ferroptosis, which can be exploited for the development of therapeutic strategies targeting ferroptosis for the treatment of cancer.


Thoracic Cancer | 2018

Long non-coding RNA linc01433 promotes migration and invasion in non-small cell lung cancer: linc01433 promotes migration and invasion

Banglun Qian; Xiang Wang; Chao Mao; Yiqun Jiang; Ying Shi; Ling Chen; Shuang Liu; Bin Wang; Shu Pan; Yongguang Tao; Hongcan Shi

For many years, lung cancer has been the most common and deadly cancer worldwide. Early diagnosis of non‐small cell lung cancer (NSCLC) in particular is very difficult because the symptoms are often ignored. The five‐year survival rate is very low despite great improvements to therapy. Thus, there is an urgent need to identify prognostic biomarkers and target molecules for the clinical diagnosis and individualized treatment of NSCLC.


Cancer Letters | 2018

Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells

Ying Shi; Na Liu; Weiwei Lai; Bin Yan; Ling Chen; Shouping Liu; Shuang Liu; Xiang Wang; Desheng Xiao; Xiaoli Liu; Chao Mao; Yiqun Jiang; Jiantao Jia; Yating Liu; Rui Yang; Ya Cao; Yongguang Tao

Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis.


Oncotarget | 2018

Baicalin hydrate inhibits cancer progression in nasopharyngeal carcinoma by affecting genome instability and splicing

Weiwei Lai; Jiantao Jia; Bin Yan; Yiqun Jiang; Ying Shi; Ling Chen; Chao Mao; Xiaoli Liu; Haosheng Tang; Menghui Gao; Ya Cao; Shuang Liu; Yongguang Tao

Baicalin hydrate (BH), a natural compound, has been investigated for many years because of its traditional medicinal properties. However, the anti-tumor activities of BH and its epigenetic role in NPC have not been elucidated. In this study, we identified that BH inhibits NPC cell growth in vivo and in vitro by inducing apoptosis and cell cycle arrest. BH epigenetically regulated genome instability by up-regulating the expression of satellite 2 (Sat2), alpha satellite (α-Sat), and major satellite (Major-Sat). BH also increased the level of IKKα, Suv39H1, and H3K9me3 and decreased LSH expression. Interestingly, BH promoted the splicing of Suv39H1 via the enhancement of m6A RNA methylation, rather than DNA methylation. Taken together, our results demonstrated that BH has an anti-tumor role in NPC and revealed a unique role of BH in genome instability and splicing in response to DNA damage.


Cell Death and Disease | 2018

Activation of AhR with nuclear IKKα regulates cancer stem-like properties in the occurrence of radioresistance

Bin Yan; Shuang Liu; Ying Shi; Na Liu; Ling Chen; Xiang Wang; Desheng Xiao; Xiaoli Liu; Chao Mao; Yiqun Jiang; Weiwei Lai; Xing Xin; Can-e Tang; Dixian Luo; Tan Tan; Jiantao Jia; Yating Liu; Rui Yang; Jun Huang; Hu Zhou; Yan Cheng; Ya Cao; Weishi Yu; Kathrin Muegge; Yongguang Tao

Most cancer patients receive radiotherapy in the course of their disease and the occurrence of radioresistance is associated with poor prognosis. The molecular pathways that drive enhanced tumorigenic potential during the development of radioresistance are poorly understood. Here, we demonstrate that aryl hydrocarbon receptor (AhR) plays a vital role in the maintenance of cancer stem-like properties. AhR promotes the cancer stem-like phenotype and drives metastasis by directly targeting the promoters of ‘stemness’ genes, such as the ATP-binding cassette sub-family G member 2 (ABCG2) gene. Moreover, the radioresistant sublines display high levels of oncometabolites including α-ketoglutarate, and treatment of cancer cells with α-ketoglutarate enhances their stem-like properties in an AhR activation-dependent manner. IKKα directly activates stemness-related genes through an interaction with AhR as a bone fide chromatin modifier. Thus, AhR is functionally linked with cancer stem-like properties, and it drives tumorigenesis in the occurrence of radioresistance.


Experimental and Therapeutic Medicine | 2017

Long non‑coding RNA HOX transcript antisense RNA promotes expression of 14‑3‑3σ in non‑small cell lung cancer

Ranran Wang; Bin Yan; Zheng Li; Yiqun Jiang; Chao Mao; Xiang Wang; Xinmin Zhou

Evidence suggests that both 14-3-3σ and long non-coding RNA HOX transcript antisense RNA (HOTAIR) are involved in the tumorigenesis and progression of lung cancer. In the present study, the potential association between 14-3-3σ and HOTAIR in non-small cell lung cancer (NSCLC) was investigated. In tissue samples collected from 54 patients with NSCLC, expression of HOTAIR and 14-3-3σ was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). After stable ectopic expression of HOTAIR and stable HOTAIR knockdown in PC9 cancer cells, the effect of HOTAIR on levels of mRNA and protein 14-3-3σ expression levels were detected using RT-qPCR and western blotting, respectively. Expression of HOTAIR and 14-3-3σ in NSCLC tissues was significantly higher than in adjacent non-cancerous lung tissue (P<0.05). Correlation analysis also identified a correlation between levels of HOTAIR and 14-3-3σ expression in NSCLC tissues (r=0.725, P=0.0005). In addition, overexpression and knockdown of HOTAIR in the human NSCLC cell line PC9 led to the upregulation and downregulation of 14-3-3σ, respectively, at both the mRNA and protein levels (all P<0.05). To the best of our knowledge, the present study provides the first in vivo and in vitro evidence to suggest that HOTAIR promotes the expression of 14-3-3σ in NSCLC. The potential association between HOTAIR and 14-3-3σ indicates that both biomolecules may be viable targets in anticancer therapy.

Collaboration


Dive into the Chao Mao's collaboration.

Top Co-Authors

Avatar

Yiqun Jiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shuang Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ying Shi

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yongguang Tao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ling Chen

Central South University

View shared research outputs
Top Co-Authors

Avatar

Bin Yan

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xiang Wang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ya Cao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Weiwei Lai

Central South University

View shared research outputs
Top Co-Authors

Avatar

Desheng Xiao

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge