Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaochao Wu is active.

Publication


Featured researches published by Chaochao Wu.


Cell | 2016

Integrated proteogenomic characterization of human high-grade serous ovarian cancer

Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Clinical Chemistry | 2016

Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays.

Andrew N. Hoofnagle; Jeffrey R. Whiteaker; Steven A. Carr; Eric Kuhn; Tao Liu; Sam A. Massoni; Stefani N. Thomas; Reid R Townsend; Lisa J. Zimmerman; Emily S. Boja; Jing Chen; Daniel L. Crimmins; Sherri R. Davies; Yuqian Gao; Tara Hiltke; Karen A. Ketchum; Christopher R. Kinsinger; Mehdi Mesri; Matthew R. Meyer; Wei Jun Qian; Regine M. Schoenherr; Mitchell G. Scott; Tujin Shi; Gordon Whiteley; John A. Wrobel; Chaochao Wu; Brad Ackermann; Ruedi Aebersold; David R. Barnidge; David M. Bunk

BACKGROUND For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.


Analytical Chemistry | 2013

Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis.

Tujin Shi; Thomas L. Fillmore; Yuqian Gao; Rui Zhao; Jintang He; Athena A. Schepmoes; Carrie D. Nicora; Chaochao Wu; Justin L. Chambers; Ronald J. Moore; Jacob Kagan; Sudhir Srivastava; Alvin Y. Liu; Karin D. Rodland; Tao Liu; David G. Camp; Richard D. Smith; Wei Jun Qian

Long-gradient separations coupled to tandem mass spectrometry (MS) were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional liquid chromatography (LC)-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in limit of quantification (LOQ) for target proteins in human female serum. On the basis of at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in nondepleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or subng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and enzyme-linked immunosorbent assay (ELISA) measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM potentially offers much higher multiplexing capacity than conventional LC-SRM due to an increase in average peak widths (~3-fold) for a 300 min gradient compared to a 45 min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.


Journal of Proteome Research | 2015

Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

Zhe Xu; Chaochao Wu; Fang Xie; Gordon W. Slysz; Nikola Tolić; Matthew E. Monroe; Vladislav A. Petyuk; Samuel H. Payne; Grant M. Fujimoto; Ronald J. Moore; Thomas L. Fillmore; Athena A. Schepmoes; Douglas A. Levine; R. Reid Townsend; Sherri R. Davies; Shunqiang Li; Matthew J. Ellis; Emily S. Boja; Robert Rivers; Henry Rodriguez; Karin D. Rodland; Tao Liu; Richard D. Smith

Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high-throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with postexcision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics and provides insights not readily obtainable from such approaches.


Journal of Proteome Research | 2014

Expediting SRM assay development for large-scale targeted proteomics experiments.

Chaochao Wu; Tujin Shi; Joseph N. Brown; Jintang He; Yuqian Gao; Thomas L. Fillmore; Anil K. Shukla; Ronald J. Moore; David G. Camp; Karin D. Rodland; Wei Jun Qian; Tao Liu; Richard D. Smith

Because of its high sensitivity and specificity, selected reaction monitoring (SRM)-based targeted proteomics has become increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to that of CID in triple quadrupole (QQQ) instrumentation and that by selection of the top 6 y fragment ions from HCD spectra, >86% of the top transitions optimized from direct infusion with QQQ instrumentation are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for 3+ precursors and that a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrated the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transition selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality.


Analytical Chemistry | 2015

Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment

Tujin Shi; Yuqian Gao; Matthew J. Gaffrey; Carrie D. Nicora; Thomas L. Fillmore; William B. Chrisler; Marina A. Gritsenko; Chaochao Wu; Jintang He; Kent J. Bloodsworth; Rui Zhao; David G. Camp; Tao Liu; Karin D. Rodland; Richard D. Smith; H. Steven Wiley; Wei Jun Qian

Targeted mass spectrometry is a promising technology for site-specific quantification of posttranslational modifications. However, a major constraint is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents for enrichment. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometry using a sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection, and multiplexing (PRISM). PRISM provides effective enrichment of target peptides into a given fraction from complex mixture, followed by selected reaction monitoring quantification. Direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) was demonstrated from as little as 25 μg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided ∼10-fold higher signal intensities, presumably due to the better peptide recovery of PRISM. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of epidermal growth factor at both the peak activation (10 min) and steady state (2 h). The maximal ERK activation was observed with 0.3 and 3 ng/mL doses for 10 min and 2 h time points, respectively. The dose-response profiles of individual phosphorylated isoforms showed that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.


Journal of Chromatography B | 2016

Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids.

Chaochao Wu; Jicheng Duan; Tao Liu; Richard D. Smith; Wei Jun Qian

Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed.


Methods of Molecular Biology | 2016

Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays

Jeffrey R. Whiteaker; Goran N. Halusa; Andrew N. Hoofnagle; Vagisha Sharma; Brendan MacLean; Ping Yan; John A. Wrobel; Jacob Kennedy; D. R. Mani; Lisa J. Zimmerman; Matthew R. Meyer; Mehdi Mesri; Emily S. Boja; Steven A. Carr; Daniel W. Chan; Xian Chen; Jing Chen; Sherri R. Davies; Matthew J. Ellis; David Fenyö; Tara Hiltke; Karen A. Ketchum; Chris Kinsinger; Eric Kuhn; Daniel C. Liebler; Tao Liu; Michael Loss; Michael J. MacCoss; Wei Jun Qian; Robert Rivers

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as an open-source repository of well-characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative to other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and posttranslational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories.


Journal of the American Society for Mass Spectrometry | 2015

An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

Chaochao Wu; Matthew E. Monroe; Zhe Xu; Gordon W. Slysz; Samuel H. Payne; Karin D. Rodland; Tao Liu; Richard D. Smith

AbstractThe comprehensive MS analysis of the peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and its utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation and related platforms, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however, an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we began by evaluating the results of several popular MS/MS database search engines, including MS-GF+, SEQUEST, and MS-Align+, for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing data for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage. Taken together, we propose an optimized informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) approaches for identification and label-free quantification for high-throughput, comprehensive, and quantitative peptidomics analysis. Graphical Abstractᅟ


Journal of Proteome Research | 2014

Accounting for population variation in targeted proteomics.

Grant M. Fujimoto; Matthew E. Monroe; Larissa Rodriguez; Chaochao Wu; Brendan MacLean; Richard D. Smith; Michael J. MacCoss; Samuel H. Payne

Individual proteomes typically differ from the reference human proteome at ∼10,000 single amino acid variants. When viewed on the population scale, this individual variation results in a wide variety of protein sequences. In targeted proteomics experiments, such variability can confound accurate protein quantification. To assist researchers in identifying target peptides with high variability within the human population, we have created the Population Variation plug-in for Skyline, which provides easy access to the polymorphisms stored in dbSNP. Given a set of peptides, the tool reports minor allele frequency for common polymorphisms. We highlight the importance of considering genetic variation by applying the tool to public data sets.

Collaboration


Dive into the Chaochao Wu's collaboration.

Top Co-Authors

Avatar

Tao Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karin D. Rodland

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wei Jun Qian

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas L. Fillmore

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tujin Shi

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Athena A. Schepmoes

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yuqian Gao

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David G. Camp

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jintang He

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge