Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuqian Gao is active.

Publication


Featured researches published by Yuqian Gao.


The Journal of Clinical Endocrinology and Metabolism | 2016

Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations.

Carrie M. Nielson; Kerry S. Jones; Rene F. Chun; Jon M. Jacobs; Ying Wang; Martin Hewison; John S. Adams; Christine M. Swanson; Christine G. Lee; Dirk Vanderschueren; Steven Pauwels; Ann Prentice; Richard D. Smith; Tujin Shi; Yuqian Gao; Athena A. Schepmoes; Joseph M. Zmuda; Jodi Lapidus; Jane A. Cauley; Roger Bouillon; Inez Schoenmakers; Eric S. Orwoll

Context: Total 25-hydroxyvitamin D (25OHD) is a marker of vitamin D status and is lower in African Americans than in whites. Whether this difference holds for free 25OHOD (f25OHD) is unclear, considering reported genetic-racial differences in vitamin D binding protein (DBP) used to calculate f25OHD. Objectives: Our objective was to assess racial-geographic differences in f25OHD and to understand inconsistencies in racial associations with DBP and calculated f25OHD. Design: This study used a cross-sectional design. Setting: The general community in the United States, United Kingdom, and The Gambia were included in this study. Participants: Men in Osteoporotic Fractures in Men and Medical Research Council studies (N = 1057) were included. Exposures: Total 25OHD concentration, race, and DBP (GC) genotype exposures were included. Outcome Measures: Directly measured f25OHD, DBP assessed by proteomics, monoclonal and polyclonal immunoassays, and calculated f25OHD were the outcome measures. Results: Total 25OHD correlated strongly with directly measured f25OHD (Spearman r = 0.84). Measured by monoclonal assay, mean DBP in African-ancestry subjects was approximately 50% lower than in whites, whereas DBP measured by polyclonal DBP antibodies or proteomic methods was not lower in African-ancestry. Calculated f25OHD (using polyclonal DBP assays) correlated strongly with directly measured f25OHD (r = 0.80–0.83). Free 25OHD, measured or calculated from polyclonal DBP assays, reflected total 25OHD concentration irrespective of race and was lower in African Americans than in US whites. Conclusions: Previously reported racial differences in DBP concentration are likely from monoclonal assay bias, as there was no racial difference in DBP concentration by other methods. This confirms the poor vitamin D status of many African-Americans and the utility of total 25OHD in assessing vitamin D in the general population.


Journal of Proteome Research | 2013

Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion

Tujin Shi; Xuefei Sun; Yuqian Gao; Thomas L. Fillmore; Athena A. Schepmoes; Rui Zhao; Jintang He; Ronald J. Moore; Jacob Kagan; Karin D. Rodland; Tao Liu; Alvin Y. Liu; Richard D. Smith; Keqi Tang; David G. Camp; Wei Jun Qian

We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM), for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50-100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion. Limits of quantification (LOQ) at low ng/mL levels with a median coefficient of variation (CV) of ∼12% were achieved for proteins spiked into human female serum. PRISM-SRM provided >100-fold improvement in the LOQ when compared to conventional LC-SRM measurements. PRISM-SRM was then applied to measure several low-abundance endogenous serum proteins, including prostate-specific antigen (PSA), in clinical prostate cancer patient sera. PRISM-SRM enabled confident detection of all target endogenous serum proteins except the low pg/mL-level cardiac troponin T. A correlation coefficient >0.99 was observed for PSA between the results from PRISM-SRM and immunoassays. Our results demonstrate that PRISM-SRM can successfully quantify low ng/mL proteins in human plasma or serum without depletion. We anticipate broad applications for PRISM-SRM quantification of low-abundance proteins in candidate biomarker verification and systems biology studies.


The New England Journal of Medicine | 2016

Role of Assay Type in Determining Free 25-Hydroxyvitamin D Levels in Diverse Populations

Carrie M. Nielson; Kerry S. Jones; Rene F. Chun; Jon M. Jacobs; Ying Wang; Martin Hewison; John S. Adams; Christine M. Swanson; Christine G. Lee; Dirk Vanderschueren; Steven Pauwels; Ann Prentice; Richard D. Smith; Tujin Shi; Yuqian Gao; Joseph M. Zmuda; Jodi Lapidus; Jane A. Cauley; Roger Bouillon; Inez Schoenmakers; Eric S. Orwoll

The choice of a vitamin D–binding protein assay is key in calculating free 25-hydroxyvitamin D levels. The results of this analysis support the use of total 25-hydroxyvitamin D as a marker of vitamin D status, regardless of race or GC genotype.


Journal of Proteome Research | 2014

A Highly Sensitive Targeted Mass Spectrometric Assay for Quantification of AGR2 Protein in Human Urine and Serum

Tujin Shi; Yuqian Gao; Sue Ing Quek; Thomas L. Fillmore; Carrie D. Nicora; Dian Su; Rui Zhao; Jacob Kagan; Sudhir Srivastava; Karin D. Rodland; Tao Liu; Richard D. Smith; Daniel W. Chan; David G. Camp; Alvin Y. Liu; Wei Jun Qian

Anterior gradient 2 (AGR2) is a secreted, cancer-associated protein in many types of epithelial cancer cells. We developed a highly sensitive targeted mass spectrometric assay for quantification of AGR2 in urine and serum. Digested peptides from clinical samples were processed by PRISM (high pressure and high resolution separations coupled with intelligent selection and multiplexing), which incorporates high pH reversed-phase liquid chromatography (LC) separations to fractionate and select target fractions for follow-on LC-selected reaction monitoring (LC-SRM) analyses. The PRISM-SRM assay for AGR2 showed a reproducibility of <10% CV and limit of quantification (LOQ) values of ∼130 pg/mL in serum and ∼10 pg per 100 μg of total protein mass in urine, respectively. A good correlation (R(2) = 0.91) was observed for the measurable AGR2 concentrations in urine between SRM and enzyme-linked immunosorbent assay (ELISA). On the basis of an initial cohort of 37 subjects, urinary AGR2/PSA concentration ratios showed a significant difference (P = 0.026) between noncancer and cancer. Large clinical cohort studies are needed for the validation of AGR2 as a useful diagnostic biomarker for prostate cancer. Our work validated the approach of identifying candidate secreted protein biomarkers through genomics and measurement by targeted proteomics, especially for proteins where no immunoassays are available.


Analytical Chemistry | 2013

Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis.

Tujin Shi; Thomas L. Fillmore; Yuqian Gao; Rui Zhao; Jintang He; Athena A. Schepmoes; Carrie D. Nicora; Chaochao Wu; Justin L. Chambers; Ronald J. Moore; Jacob Kagan; Sudhir Srivastava; Alvin Y. Liu; Karin D. Rodland; Tao Liu; David G. Camp; Richard D. Smith; Wei Jun Qian

Long-gradient separations coupled to tandem mass spectrometry (MS) were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional liquid chromatography (LC)-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in limit of quantification (LOQ) for target proteins in human female serum. On the basis of at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in nondepleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or subng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and enzyme-linked immunosorbent assay (ELISA) measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM potentially offers much higher multiplexing capacity than conventional LC-SRM due to an increase in average peak widths (~3-fold) for a 300 min gradient compared to a 45 min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.


Science Signaling | 2016

Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

Tujin Shi; Mario Niepel; Jason E. McDermott; Yuqian Gao; Carrie D. Nicora; William B. Chrisler; Lye Meng Markillie; Vladislav A. Petyuk; Richard D. Smith; Karin D. Rodland; Peter K. Sorger; Wei Jun Qian; H. Steven Wiley

Abundance of most EGFR-MAPK pathway proteins is conserved across cell types, revealing adaptors as rate-limiting nodes. Adaptors are the conductors in the signaling symphony Just as there are rate-limiting enzymes in biochemical process, there are rate-limiting steps in cell signaling networks. These rate-limiting proteins direct the signal through specific molecular cascades to dictate the response. Shi et al. sought to identify the proteins in the epidermal growth factor receptor (EGFR) signaling network that serve as the conductors or directors of the EGF signal. They found that the abundance of most core pathway proteins was very similar between cells and rather that the very low abundance of the adaptor proteins made them rate-limiting for EGFR-MAPK pathway signaling in normal and malignant cells. The findings suggest that adaptor proteins serve as the directors of the signaling script. Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling.


Kidney International | 2016

Mining the human urine proteome for monitoring renal transplant injury

Tara K. Sigdel; Yuqian Gao; Jintang He; Anyou Wang; Carrie D. Nicora; Thomas L. Fillmore; Tujin Shi; Bobbie Jo M Webb-Robertson; Richard D. Smith; Wei Jun Qian; Oscar Salvatierra; David G. Camp; Minnie M. Sarwal

The human urinary proteome provides an assessment of kidney injury with specific biomarkers for different kidney injury phenotypes. In an effort to fully map and decipher changes in the urine proteome and peptidome after kidney transplantation, renal allograft biopsy matched urine samples were collected from 396 kidney transplant recipients. Centralized and blinded histology data from paired graft biopsies was used to classify urine samples into diagnostic categories of acute rejection, chronic allograft nephropathy, BK virus nephritis, and stable graft. A total of 245 urine samples were analyzed by liquid chromatography-mass spectrometry using isobaric Tags for Relative and Absolute Quantitation (iTRAQ) reagents. From a group of over 900 proteins identified in transplant injury, a set of 131 peptides were assessed by selected reaction monitoring for their significance in accurately segregating organ injury causation and pathology in an independent cohort of 151 urine samples. Ultimately, a minimal set of 35 proteins were identified for their ability to segregate the 3 major transplant injury clinical groups, comprising the final panel of 11 urinary peptides for acute rejection (93% area under the curve [AUC]), 12 urinary peptides for chronic allograft nephropathy (99% AUC), and 12 urinary peptides for BK virus nephritis (83% AUC). Thus, urinary proteome discovery and targeted validation can identify urine protein panels for rapid and noninvasive differentiation of different causes of kidney transplant injury, without the requirement of an invasive biopsy.


Journal of Proteome Research | 2014

Expediting SRM assay development for large-scale targeted proteomics experiments.

Chaochao Wu; Tujin Shi; Joseph N. Brown; Jintang He; Yuqian Gao; Thomas L. Fillmore; Anil K. Shukla; Ronald J. Moore; David G. Camp; Karin D. Rodland; Wei Jun Qian; Tao Liu; Richard D. Smith

Because of its high sensitivity and specificity, selected reaction monitoring (SRM)-based targeted proteomics has become increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to that of CID in triple quadrupole (QQQ) instrumentation and that by selection of the top 6 y fragment ions from HCD spectra, >86% of the top transitions optimized from direct infusion with QQQ instrumentation are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for 3+ precursors and that a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrated the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transition selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality.


Analytical Chemistry | 2016

Capillary Electrophoresis-Nanoelectrospray Ionization-Selected Reaction Monitoring Mass Spectrometry via a True Sheathless Metal-Coated Emitter Interface for Robust and High-Sensitivity Sample Quantification.

Xuejiang Guo; Thomas L. Fillmore; Yuqian Gao; Keqi Tang

A new sheathless transient capillary isotachophoresis (CITP)/capillary zone electrophoresis (CZE)-MS interface, based on a commercially available capillary with an integrated metal-coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems suffered to a certain degree by almost all the available CE-MS interfaces, and pushing the CE-MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE-MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal-coated surface of the ESI emitter, making it a true sheathless CE-MS interface. Stable electrospray was established by avoiding the formation of gas bubbles from electrochemical reaction inside the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE-MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ below 5 attomole.


Analytical Chemistry | 2015

Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment

Tujin Shi; Yuqian Gao; Matthew J. Gaffrey; Carrie D. Nicora; Thomas L. Fillmore; William B. Chrisler; Marina A. Gritsenko; Chaochao Wu; Jintang He; Kent J. Bloodsworth; Rui Zhao; David G. Camp; Tao Liu; Karin D. Rodland; Richard D. Smith; H. Steven Wiley; Wei Jun Qian

Targeted mass spectrometry is a promising technology for site-specific quantification of posttranslational modifications. However, a major constraint is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents for enrichment. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometry using a sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection, and multiplexing (PRISM). PRISM provides effective enrichment of target peptides into a given fraction from complex mixture, followed by selected reaction monitoring quantification. Direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) was demonstrated from as little as 25 μg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided ∼10-fold higher signal intensities, presumably due to the better peptide recovery of PRISM. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of epidermal growth factor at both the peak activation (10 min) and steady state (2 h). The maximal ERK activation was observed with 0.3 and 3 ng/mL doses for 10 min and 2 h time points, respectively. The dose-response profiles of individual phosphorylated isoforms showed that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.

Collaboration


Dive into the Yuqian Gao's collaboration.

Top Co-Authors

Avatar

Tujin Shi

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wei Jun Qian

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas L. Fillmore

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karin D. Rodland

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tao Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David G. Camp

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Athena A. Schepmoes

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carrie D. Nicora

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jacob Kagan

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge