Chaoying Wan
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaoying Wan.
Chemical Science | 2014
Athina Anastasaki; Vasiliki Nikolaou; George S. Pappas; Qiang Zhang; Chaoying Wan; Paul Wilson; Thomas P. Davis; Michael R. Whittaker; David M. Haddleton
The ability to regulate the activation and deactivation steps via an external stimulus has always been a challenge in polymer chemistry. In an ideal photo-mediated system, whereby high monomer conversion and excellent end group fidelity can be maintained, precise control over the polymer composition and microstructure would be a significant breakthrough. Herein, we report, a versatile, simple and inexpensive method that allows for the synthesis of sequence-controlled multiblock copolymers in a one pot polymerization reaction at ambient temperature. In the absence of a conventional photoredox catalyst and dye-sensitisers, low concentrations of CuBr2 in synergy with Me6-Tren mediate acrylic block copolymerization under UV irradiation (λmax ≈ 360 nm). Four different acrylate monomers were alternated in various combinations within the polymer composition illustrating the potential of the technique. Narrow disperse undecablock copolymers were obtained (Đ < 1.2) with quantitative conversion achieved between the iterative monomer additions. The effect of the chain length was investigated allowing for higher molecular weight multiblock copolymers to be obtained. This approach offers a versatile and inexpensive platform for the preparation of high-order multiblock functional materials with additional applications arising from the precise spatiotemporal “on/off” control and resolution when desired.
Polymer Testing | 2004
Ning Chen; Chaoying Wan; Yong Zhang; Yinxi Zhang
Abstract The effects of nanoscale calcium carbonate (nano-CaCO 3 ) particles on the mechanical properties of different ductile polymer matrices were investigated. Polyvinyl chloride (PVC) and PVC/Blendex (BLENDEX ® 338) blend were used as the matrix in this study. The nano-CaCO 3 particles were observed to be dispersed uniformly on the nanoscale in both PVC and PVC/Blendex blend by means of transmission electron microscopy. The impact strength, flexural modulus and Vicat softening temperature of PVC and PVC/Blendex blend were significantly enhanced after addition of 0–15 phr nano-CaCO 3 , but the tensile properties of the two matrices showed different changes in the presence of nano-CaCO 3 . The yield strength and elongation at break of PVC could be increased by the addition of nano-CaCO 3 , while those of PVC/Blendex were decreased. Dynamic mechanical thermal analysis showed that the addition of nano-CaCO 3 led to an increase in storage modulus and glass transition temperature for both PVC and PVC/Blendex blend.
Biomedical Materials | 2011
Chaoying Wan; Biqiong Chen
Biomedical applications of graphene have recently attracted intensive attention, with graphene-based nanomaterials being reported as promising candidates in, for example, drug delivery, biosensing and bioimaging. In this paper, mechanical properties and bioactivity of nanofibrous and porous membranes electrospun from graphene oxide (GO) nanoplatelets reinforced poly(ε-caprolactone) (PCL) were investigated. The results showed that the presence of 0.3 wt% GO increased the tensile strength, modulus and energy at break of the PCL membrane by 95%, 66% and 416%, respectively, while improving its bioactivity during biomineralization and maintaining the high porosity of over 94%. The mechanical enhancements were ascribed to the change in the fiber morphology and the reinforcing effect of GO on PCL nanofibers, whereas the improvements on the bioactivity stemmed from the anionic functional groups present on the GO surface that nucleated the formation of biominerals. Systematic studies on the PCL/GO nanocomposite films with varying GO concentrations revealed that the reinforcing effect of GO on PCL was due to the strong interfacial interactions between the two phases characterized by Fourier transform infrared spectroscopy, the good dispersion of GO in the matrix and the intrinsic properties of GO nanoplatelets. The strong and bioactive PCL/GO nanofibrous membranes with a high porosity have great potential for biomedical applications.
Journal of Colloid and Interface Science | 2009
Feng Zhao; Chaoying Wan; Xujin Bao; Bala Kandasubramanian
Sodium montmorillonite (Na-MMT) was modified with various amounts of aminopropylisooctyl polyhedral oligomeric silsequioxane (POSS) and a second surfactant (alkyl ammonium based) via ion-exchange reactions. Interlayer spacing, interlamellar structure, and thermal and surface properties of these organoclays were characterized by wide angle X-ray diffraction, thermogravimetric analysis, and contact angle measurement. The interlayer space of POSS-modified clay (POSS-MMT) was strongly dependent on the arrangement of POSS surfactant but less dependent on the POSS concentration. The sodium ions in Na-MMT were only partially exchanged by protonized POSS due to the steric hindrance effect. In addition, the dual-surfactant-modified clays exhibited increased exchange ratios by controlling the amount of the second surfactant, resulting in a good balance in hydrophobicity and polarity of the modified clays. The resultant organoclays were mixed with polypropylene (PP) via a melt-compounding method. It was found that the dual-surfactant-modified clays with low polarity and similar hydrophobicity to PP were well dispersed in the PP matrix.
Journal of Materials Chemistry | 2017
Chaoying Wan; Chris R. Bowen
Energy harvesting exploits ambient sources of energy such as mechanical loads, vibrations, human motion, waste heat, light or chemical sources and converts them into useful electrical energy. The applications for energy harvesting include low power electronics or wireless sensing at relatively lower power levels (nW to mW) with an aim to reduce a reliance on batteries or electrical power via cables and realise fully autonomous and self-powered systems. This review focuses on flexible energy harvesting system based on polyvinylidene fluoride based polymers, with an emphasis on manipulating and optimising the properties and performance of the polymeric materials and related nanocomposites through structuring the material at multiple scales. Ferroelectric properties are described and the potential of using the polarisation of the materials for vibration and thermal harvesting using piezo- and pyro-electric effects are explained. Approaches to tailor the ferroelectric, piezoelectric and pyroelectric properties of polymer materials are explored in detail; these include the influence of polymer processing conditions, heat treatment, nanoconfinement, blending, forming nanocomposites and electrospinning. Finally, examples of flexible harvesting devices that utilise the optimised ferroelectric polymer or nanocomposite systems are described and potential applications and future directions of research explored.
Journal of Physical Chemistry B | 2008
Chaoying Wan; Feng Zhao; Xujin Bao; Bala Kandasubramanian; Matthew P. Duggan
Novel porous aminopropyllsooctyl polyhedral oligomeric silsesquioxane (POSS) modified montmorillonite clay complexes (POSS-Mts) with large interlayer distance and specific surface area have been successfully prepared via ion-exchange reaction and followed by freeze-drying treatment. The morphology of the POSS-Mts is highly influenced by the POSS concentration, pH of the suspension and drying procedure, but the interlayer distance of the POSS-Mts does not change much when the POSS concentration is above 0.4 CEC. The POSS-Mts were used as Sn-catalyst supporters to initiate the ring-opening polymerization of cyclic butylene terephthalate oligomers (CBT) for the first time. No diffraction peak was detected by wide-angle X-ray diffraction for the polymerized composites (pCBT/POSS-Mt), even at 10 wt % loading of POSS-Mt. A clay network rather than exfoliation structure was observed unexpectedly in the composites by transmission electron microscopy. The pCBT/POSS-Mt composite with 10 wt % POSS-Mt was further melt-compounded with commercial PBT resin as a master batch. The tensile properties of the resultant PBT/POSS-Mt composites were highly improved as compared to the pristine PBT due to the homogeneous dispersion of POSS-Mt in the PBT matrix.
RSC Advances | 2015
Ilke Uysal Unalan; Chaoying Wan; Silvia Trabattoni; Luciano Piergiovanni; Stefano Farris
Ultrasound exfoliation of graphite with the assistance of three polysaccharides (nonionic pullulan, cationic chitosan, and anionic alginate) was investigated in this work. The effects of polymer type, initial concentration of graphite, and ultrasonication period on the graphene yield and quality were compared. Under a sonotrode-type ultrasonication treatment for 30 min, graphene aqueous dispersions with concentrations of up to 2.3 mg ml−1 in pullulan solutions and 5.5 mg ml−1 in chitosan solutions were achieved. The obtained graphene nanosheets were characterized as low-defect mono-layer, bi-layer, and few-layer (<5), and formed stable dispersions in water for up to 6 months. The adsorption of pullulan and chitosan biopolymers on the graphene surface as determined by TGA technique was approximately 2.5 wt% and 8.5 wt%, respectively, which accounts for the dispersibility and stability of the graphene sheets in water. Findings arising from this work suggest that pullulan and chitosan are more effective in exfoliating graphite into graphene than alginate due to the different surface free energy and thermodynamic affinity. The polysaccharide-assisted aqueous-exfoliation approach enables the production of water-dispersible graphene with high quality and large quantity, thus providing an industrially scalable route for new potential applications of graphene-based nanocomposites, e.g. in the food packaging industry.
Nanotechnology | 2015
Ilke Uysal Unalan; Chaoying Wan; Łukasz Figiel; Richard T. Olsson; Silvia Trabattoni; Stefano Farris
Polymer nanocomposites are increasingly important in food packaging sectors. Biopolymer pullulan is promising in manufacturing packaging films or coatings due to its excellent optical clarity, mechanical strength, and high water-solubility as compared to other biopolymers. This work aims to enhance its oxygen barrier properties and overcome its intrinsic brittleness by utilizing two-dimensional planar graphene oxide (GO) nanoplatelets. It has been found that the addition of only 0.2 wt% of GO enhanced the tensile strength, Youngs modulus, and elongation at break of pullulan films by about 40, 44 and 52%, respectively. The light transmittance at 550 nm of the pullulan/GO films was 92.3% and haze values were within 3.0% threshold, which meets the general requirement for food packaging materials. In particular, the oxygen permeability coefficient of pullulan was reduced from 6337 to 2614 mL μm m(-2) (24 h(-1)) atm(-1) with as low as 0.05 wt% of GO loading and further to 1357 mL μm m(-2) (24 h(-1)) atm(-1) when GO concentration reached 0.3 wt%. The simultaneous improvement of the mechanical and oxygen barrier properties of pullulan was ascribed to the homogeneous distribution and prevalent unidirectional alignment of GO nanosheets, as determined from the characterization and theoretical modelling results. The exceptional oxygen barrier properties of pullulan/GO nanocomposites with enhanced mechanical flexibility and good optical clarity will add new values to high performance food packaging materials.
Polymer Chemistry | 2016
Jaipal Gupta; Daniel J. Keddie; Chaoying Wan; David M. Haddleton; Tony McNally
Poly(lauryl acrylate) P[LA] of various molar masses were prepared via reversible addition–fragmentation chain transfer (RAFT) polymerisation and Cu(0)-mediated radical polymerisation, for the purpose of improving the dispersion and interfacial adhesion of MWCNTs with polymers such as isotactic poly(propylene) (iPP). Lauryl acrylate (LA) was polymerised via RAFT to high conversion (95%), furnished polymers in good agreement with theoretical Mn with dispersity increasing with increasing Mn. LA polymerised via the Cu(0)-mediated method to full conversion (>98%), gave polymers in good agreement with theoretical Mn and low dispersity (Đ ≈ 1.2) for lower molar mass polymers. Low molar mass tailing was also observed for P[LA] via Cu(0)-mediated polymerisation for higher molar mass polymers. Thermogravimetric analysis (TGA) of P[LA] via RAFT showed an onset of degradation occurred at ≈340–350 °C, however, this decreased to ≈250–260 °C for lower molar mass polymers. TGA of the RAFT agent revealed an onset of degradation of ≈200–250 °C. Free radicals generated from thermal degradation of end groups did not influence the thermal stability of the P[LA] backbone and ‘unzipping’ commonly seen with methacrylates was not observed. TGA analysis of P[LA] via the Cu(0)-mediated method revealed a similar degradation profile to that of P[LA] via RAFT. The thermal stability of P[LA] is sufficient to allow for melt processing with iPP. P[LA] via RAFT mixed with MWCNTs showed an adsorption of ≈10–25 wt% P[LA] on to the MWCNTs. The onset of thermal degradation of the P[LA] remained unchanged after adsorption on to the MWCNTs. P[LA] via the Cu(0)-mediated method adsorbed up to 85 wt% and an increase in thermal stability of ≈50 °C was recorded. Increasing P[LA] and MWCNT concentration independently also resulted in an increase in the level of adsorption, possibility due to increased CH–π interaction. The difference in thermal stability could possibly be due to heat transfer from the P[LA] to the MWCNTs, resulting in delayed pyrolysis of P[LA]. Size exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) of P[LA] after heating to 200 °C for 30 min in air showed loss of end groups but, the P[LA] backbone remained preserved for both polymer types. Evidence from transmission electron micrographs (TEM) shows the P[LA] adsorbing onto the MWCNT surface. Melt processing composites of P[LA] via Cu(0)-mediated with MWCNTs and iPP was possible as the P[LA] was thermally stable during the both extrusion and in the TGA when studied post melt mixing.
RSC Advances | 2015
Kuiyong Chen; Xiaobin Huang; Chaoying Wan; Hong Liu
Hybrids based on transition metal phosphide (Mn2P, Co2P, Ni2P) nanoparticles and heteroatom-doped carbon nanotubes were facilely synthesized, and used as efficient oxygen reduction reaction (ORR) catalysts in alkaline solution. Transition metal phosphide nanoparticles formed core/shell structures with graphitic carbon, and the nanoparticles (core) can significantly influence the ORR catalytic activity of the carbon shell. Hybrids based on Co2P and Mn2P decorated heteroatom-doped carbon exhibit excellent ORR catalytic activity with regards to dominant 4e− process, low over potential, excellent methanol tolerance and durability. In contrast, Ni2P decorated heteroatom-doped carbon shows inferior ORR catalytic activity. The variation of ORR performance mainly derives from the collective effect of the electronegativity and binding energy shift of the transition metals, which would result in a different surface electronic structure of the heteroatom-doped carbon. Low electronegativity and low binding energy shift of the transition metals would lead to strong electron-donating ability of the transition metal phosphide nanoparticles, resulting in the enhanced ORR catalytic activity of the hybrid materials. This work is significant for development of advanced ORR catalysts based on heteroatom-doped carbon via rational design of the structure of hybrid materials.