Chaozhong Guo
Chongqing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaozhong Guo.
Materials | 2015
Chaozhong Guo; Lingtao Sun; Wenli Liao; Zhongbin Li
The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR) is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900) as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysis of bioprotein-enriched enoki mushroom as a starting material, and inexpensive carbon nanoparticles as the inserting matrix and conducting agent at controlled temperatures. Results show that the N-BC@CNP-900 catalyst exhibits the best ORR electrocatalytic activity with an onset potential of 0.94 V (versus reversible hydrogen electrode, RHE) and high stability. Meanwhile, this catalyst significantly exhibits good selectivity of the four-electron reaction pathway in an alkaline electrolyte. It is notable that pyridinic- and graphtic-nitrogen groups that play a key role in the enhancement of the ORR activity may be the catalytically active structures for the ORR. We further propose that the pyridinic-nitrogen species can mainly stabilize the ORR activity and the graphitic-nitrogen species can largely enhance the ORR activity. Besides, the addition of carbon support also plays an important role in the pyrolysis process, promoting the ORR electrocatalytic activity.
Analytical Methods | 2012
Chaozhong Guo; Changguo Chen; Zhongli Luo; Lin Chen
This work takes advantage of electrochemically anodic pretreated carbon paste electrode modified with acetylene black nanocarbon particles (AB/CPE), a new and high-sensitive analytical method for insulin was put forward. Modern voltammetric testing techniques were used for primarily investigating the redox electrochemical characterization of Fe(CN)63−/4− and electrochemical behavior of insulin on nanocarbon electrode surface. At the same time, a plausible mechanism was also proposed to provide insights into understanding how to facilitate the electron transfer between insulin biomolecule and electrode surface. The results have shown that the pretreated AB/CPE represented high accumulation efficiency to insulin and promoted its direct electron transfer rate owing to the presence of nanocarbon particles and anodic pretreatment. It is found that insulin exhibited a very sensitive anodic peak at 0.47 V on the pretreated AB/CPE, and its peak current was increased about six times more than that on the pretreated carbon paste electrode (CPE). A linear relationship between the anodic peak current and the concentration of insulin from 20 to 1000 nM and a limit of detection as low as 5 nM were obtained using the pretreated AB/CPE. Attracting attention, the proposed method was applied to the realistic samples successfully and showed good recovery and reproducibility.
Nanoscale Research Letters | 2016
Chaozhong Guo; Zhongbin Li; Lidan Niu; Wenli Liao; Lingtao Sun; Bixia Wen; Yunqing Nie; Jing Cheng; Changguo Chen
So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93xa0V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.
Nanoscale Research Letters | 2017
Chaozhong Guo; Youcheng Wu; Zhongbin Li; Wenli Liao; Lingtao Sun; Chao Wang; Bixia Wen; Yanrong Li; Changguo Chen
The design of noble-metal-free catalysts for oxygen reduction reaction (ORR) is very important to the commercialization of fuel cells. Here, we use a Co-modified montmorillonite (Co-MMT) as a flat template to prepare Co- and N-doped nanocarbon ORR catalysts derived from carbonization of polyaniline at controlled temperatures. The use of flat template can hinder the agglomeration of polyaniline during pyrolysis process and optimize the N-rich active site density on the surface. The addition of transition metal Co in the flat MMT template can largely promote the formation of Co–N sites in prepared catalyst, facilitating the effective improvement of catalytic activity towards the ORR with a direct four-electron transfer pathway. The excellent ORR activity may be mainly attributed to high contents of graphitic N, pyridinic-N, and Co-N configurations. This study opens a new way to rationally design cheap and active ORR catalysts by using simple flat compound as a direct template.
Materials | 2017
Wensheng Li; Lingtao Sun; Rong Hu; Wenli Liao; Zhongbin Li; Yanrong Li; Chaozhong Guo
The great challenge of boosting the oxygen reduction reaction (ORR) activity of non-noble-metal electrocatalysts is how to achieve effective exposure and full utilization of nitrogen-rich active sites. To realize the goals of high utilization of active sites and fast electron transport, here we report a new strategy for synthesis of an iron and nitrogen co-doped carbon nanolayers-wrapped multi-walled carbon nanotubes as ORR electrocatalyst (N-C@CNT-Fe) via using partially carbonized hemoglobin as a single-source precursor. The onset and half-wave potentials for ORR of N-C@CNT-Fe are only 45 and 54 mV lower than those on a commercial Pt/C (20 wt.% Pt) catalyst, respectively. Besides, this catalyst prepared in this work has been confirmed to follow a four-electron reaction mechanism in ORR process, and also displays ultra-high electrochemical cycling stability in both acidic and alkaline electrolytes. The enhancement of ORR activity can be not only attributed to full exposure and utilization of active site structures, but also can be resulted from the improvement of electrical conductivity owing to the introduction of CNT support. The analysis of X-ray photoelectric spectroscopy shows that both Fe–N and graphitic-N species may be the ORR active site structures of the prepared catalyst. Our study can provide a valuable idea for effective improvement of the electrocatalytic activity of non-noble-metal ORR catalysts.
Materials | 2015
Yaqiong Zhang; Chaozhong Guo; Zili Ma; Huijuan Wu; Changguo Chen
The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR) is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe–N/C electrocatalyst derived from the co-pyrolysis of Ipomoea aquatica biomass, carbon black (Vulcan XC-72R) and FeCl3·6H2O at 900 °C under nitrogen atmosphere. Electrochemical results show that the Fe–N/C catalyst exhibits higher electrocatalytic activity for ORR, longer durability and higher tolerance to methanol compared to a commercial Pt/C catalyst (40 wt %) in an alkaline medium. In particular, Fe–N/C presents an onset potential of 0.05 V (vs. Hg/HgO) for ORR in an alkaline medium, with an electron transfer number (n) of ~3.90, which is close to that of Pt/C. Our results confirm that the catalyst derived from I. aquatica and carbon black is a promising non-noble metal catalyst as an alternative to commercial Pt/C catalysts.
Journal of Materials Chemistry | 2018
Chaozhong Guo; Yanrong Li; Wenli Liao; Yao Liu; Zhongbin Li; Lingtao Sun; Changguo Chen; Jin Zhang; Yujun Si; Lu Li
The improvement of total nitrogen content and nitrogen-doping efficiency in carbon-based electrocatalysts is greatly significant to boost the electrocatalytic activity for the oxygen reduction reaction (ORR). Here, we report a new strategy for the synthesis of a highly mesoporous cobalt and nitrogen co-doped carbon electrocatalyst (3D-Co–N–C) with a three-dimensional network structure and a high BET surface area (∼638 m2 g−1) via using a novel cobalt-2,4,6-tri(2-pyridyl)-1,3,5-triazine complex with a strong molecular-level coordination effect as a single-source precursor and self-assembled sodium chloride aggregates as a space-confined nanoreactor for effective control of a high-temperature calcination process to reduce the thermal loss of nitrogen atoms and promote the nitrogen-doping efficiency, facilitating boosting of the ORR electrocatalytic activity in alkaline medium. The prepared 3D-Co–N–C catalyst exhibits unexpectedly excellent ORR activity with an onset potential of ∼1.0 V and a half-wave potential of ∼0.83 V, which is comparable to that of the commercial 20 wt% Pt/C catalyst. Additionally, the H2O2 yield (<17.0%) and the average electron transfer number of ∼3.8 for 3D-Co–N–C indicate a quasi four-electron pathway for ORR catalysis, suggesting that 3D-Co–N–C is a promising carbon-based electrocatalyst. It is proposed that the formation of the Co–Nx active structure can effectively enhance the electrocatalytic activity, but high contents of pyridinic- and graphitic-N can be mainly responsible for the ORR activity, which may be the electrocatalytically active site centers for the ORR. Besides, high BET surface area, highly mesoporous characteristics and outstanding electronic conductivity are also significant for the improvement of ORR activity. This study can provide a new, facile and green method for building high-performance carbon-based ORR electrocatalysts derived from easily available and innoxious transition metal–organic complexes, which can also help us to better understand the origin of the activity, active sites and their catalysis mechanism.
Nanoscale Research Letters | 2017
Tong Feng; Wenli Liao; Zhongbin Li; Lingtao Sun; Dongping Shi; Chaozhong Guo; Yu Huang; Yi Wang; Jing Cheng; Yanrong Li; Qizhi Diao
Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.
Nanoscale | 2015
Chaozhong Guo; Wenli Liao; Zhongbin Li; Lingtao Sun; Changguo Chen
Carbon | 2015
Chaozhong Guo; Wenli Liao; Zhongbin Li; Changguo Chen