Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlene Mao is active.

Publication


Featured researches published by Charlene Mao.


Proceedings of the National Academy of Sciences of the United States of America | 2012

MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response

Muller Fabbri; Alessio Paone; Federica Calore; Roberta Galli; Eugenio Gaudio; Ramasamy Santhanam; Francesca Lovat; Paolo Fadda; Charlene Mao; Gerard J. Nuovo; Nicola Zanesi; Melissa Crawford; Gulcin Ozer; Dorothee Wernicke; Hansjuerg Alder; Michael A. Caligiuri; Patrick Nana-Sinkam; Danilo Perrotti; Carlo M. Croce

MicroRNAs (miRNAs) are small noncoding RNAs, 19–24 nucleotides in length, that regulate gene expression and are expressed aberrantly in most types of cancer. MiRNAs also have been detected in the blood of cancer patients and can serve as circulating biomarkers. It has been shown that secreted miRNAs within exosomes can be transferred from cell to cell and can regulate gene expression in the receiving cells by canonical binding to their target messenger RNAs. Here we show that tumor-secreted miR-21 and miR-29a also can function by another mechanism, by binding as ligands to receptors of the Toll-like receptor (TLR) family, murine TLR7 and human TLR8, in immune cells, triggering a TLR-mediated prometastatic inflammatory response that ultimately may lead to tumor growth and metastasis. Thus, by acting as paracrine agonists of TLRs, secreted miRNAs are key regulators of the tumor microenvironment. This mechanism of action of miRNAs is implicated in tumor–immune system communication and is important in tumor growth and spread, thus representing a possible target for cancer treatment.


Nature Genetics | 2005

Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia

Li Yu; Chunhui Liu; Jeff Vandeusen; Brian Becknell; Zunyan Dai; Yue Zhong Wu; Aparna Raval; Te Hui Liu; Wei Ding; Charlene Mao; Shujun Liu; Laura T. Smith; Stephen C. Lee; Laura Z. Rassenti; Guido Marcucci; John C. Byrd; Michael A. Caligiuri; Christoph Plass

DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.


Immunity | 2010

Interleukin-1β Selectively Expands and Sustains Interleukin-22+ Immature Human Natural Killer Cells in Secondary Lymphoid Tissue

Tiffany Hughes; Brian Becknell; Aharon G. Freud; Susan McClory; Edward L. Briercheck; Jianhua Yu; Charlene Mao; Chiara Giovenzana; Gerard J. Nuovo; Lai Wei; Xiaoli Zhang; Mikhail A. Gavrilin; Mark D. Wewers; Michael A. Caligiuri

Among human natural killer (NK) cell intermediates in secondary lymphoid tissue (SLT), stage 3 CD34(-)CD117(+)CD161(+)CD94(-) immature NK (iNK) cells uniquely express aryl hydrocarbon receptor (AHR) and interleukin-22 (IL-22), supporting a role in mucosal immunity. The mechanisms controlling proliferation and differentiation of these cells are unknown. Here we demonstrate that the IL-1 receptor IL-1R1 was selectively expressed by a subpopulation of iNK cells that localized proximal to IL-1beta-producing conventional dendritic cells (cDCs) within SLT. IL-1R1(hi) iNK cells required continuous exposure to IL-1beta to retain AHR and IL-22 expression, and they proliferate in direct response to cDC-derived IL-15 and IL-1beta. In the absence of IL-1beta, a substantially greater fraction of IL-1R1(hi) iNK cells differentiated to stage 4 NK cells and acquired the ability to kill and secrete IFN-gamma. Thus, cDC-derived IL-1beta preserves and expands IL-1R1(hi)IL-22(+)AHR(+) iNK cells, potentially influencing human mucosal innate immunity during infection.


Blood | 2012

miR-155 regulates IFN-γ production in natural killer cells

Rossana Trotta; Li Chen; David Ciarlariello; Srirama Josyula; Charlene Mao; Stefan Costinean; Lianbo Yu; Jonathan P. Butchar; Susheela Tridandapani; Carlo M. Croce; Michael A. Caligiuri

MicroRNAs (miRs) are small, noncoding RNA molecules with important regulatory functions whose role in regulating natural killer (NK) cell biology is not well defined. Here, we show that miR-155 is synergistically induced in primary human NK cells after costimulation with IL-12 and IL-18, or with IL-12 and CD16 clustering. Over-expression of miR-155 enhanced induction of IFN-γ by IL-12 and IL-18 or CD16 stimulation, whereas knockdown of miR-155 or its disruption suppressed IFN-γ induction in monokine and/or CD16-stimulated NK cells. These effects on the regulation of NK cell IFN-γ expression were found to be mediated at least in part via miR-155s direct effects on the inositol phosphatase SHIP1. Consistent with this, we observed that modulation of miR-155 overrides IL-12 and IL-18-mediated regulation of SHIP1 expression in NK cells. Collectively, our data indicate that miR-155 expression is regulated by stimuli that strongly induce IFN-γ in NK cells such as IL-12, IL-18, and CD16 activation, and that miR-155 functions as a positive regulator of IFN-γ production in human NK cells, at least in part via down-regulating SHIP1. These findings may have clinical relevance for targeting miR-155 in neoplastic disease.


Blood | 2012

Regulation of acute graft-versus-host disease by microRNA-155

Parvathi Ranganathan; Catherine E. A. Heaphy; Stefan Costinean; Nicole Stauffer; Caroline Na; Mehdi Hamadani; Ramasamy Santhanam; Charlene Mao; Patricia A. Taylor; Sukhinder K. Sandhu; Gang He; Arwa Shana'ah; Gerard J. Nuovo; Alessandro Laganà; Luciano Cascione; Susanna Obad; Oliver Broom; Sakari Kauppinen; John C. Byrd; Michael A. Caligiuri; Danilo Perrotti; Gregg A. Hadley; Guido Marcucci; Steven M. Devine; Bruce R. Blazar; Carlo M. Croce; Ramiro Garzon

Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic stem cell transplant (alloHSCT), underscoring the need to further elucidate its mechanisms and develop novel treatments. Based on recent observations that microRNA-155 (miR-155) is up-regulated during T-cell activation, we hypothesized that miR-155 is involved in the modulation of aGVHD. Here we show that miR-155 expression was up-regulated in T cells from mice developing aGVHD after alloHSCT. Mice receiving miR-155-deficient donor lymphocytes had markedly reduced lethal aGVHD, whereas lethal aGVHD developed rapidly in mice recipients of miR-155 overexpressing T cells. Blocking miR-155 expression using a synthetic anti-miR-155 after alloHSCT decreased aGVHD severity and prolonged survival in mice. Finally, miR-155 up-regulation was shown in specimens from patients with pathologic evidence of intestinal aGVHD. Altogether, our data indicate a role for miR-155 in the regulation of GVHD and point to miR-155 as a novel target for therapeutic intervention in this disease.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells.

Amit Kumar Srivastava; Chunhua Han; Ran Zhao; Tiantian Cui; Yuntao Dai; Charlene Mao; Weiqiang Zhao; Xiaoli Zhang; Jianhua Yu; Qi-En Wang

Significance Cancer stem cells (CSCs) exhibit enhanced chemo/radiotherapy resistance, and their survival following cancer treatment is believed to be responsible for tumor recurrence and metastasis. Thus, understanding the mechanisms through which CSCs survive conventional chemotherapy is essential for identification of new therapeutic strategies to prevent tumor relapse. Our findings that ovarian CSCs survive cisplatin treatment through elevated expression of polymerase η represent an opportunity to eradicate CSCs and improve the survival of ovarian cancer patients. In addition, identification of miR-93 as the regulator of polymerase η expression provides a target to increase the efficacy of cisplatin treatment. Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.


Blood | 2012

Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias.

Nicholas Zorko; Kelsie M. Bernot; Susan P. Whitman; Ronald F. Siebenaler; Elshafa H. Ahmed; Gabriele G. Marcucci; Daniel A. Yanes; Kathleen McConnell; Charlene Mao; Chidimma Kalu; Xiaoli Zhang; David Jarjoura; Adrienne M. Dorrance; Nyla A. Heerema; Benjamin H. Lee; Gang Huang; Guido Marcucci; Michael A. Caligiuri

The MLL-partial tandem duplication (PTD) associates with high-risk cytogenetically normal acute myeloid leukemia (AML). Concurrent presence of FLT3-internal tandem duplication (ITD) is observed in 25% of patients with MLL-PTD AML. However, mice expressing either Mll-PTD or Flt3-ITD do not develop AML, suggesting that 2 mutations are necessary for the AML phenotype. Thus, we generated a mouse expressing both Mll-PTD and Flt3-ITD. Mll(PTD/WT):Flt3(ITD/WT) mice developed acute leukemia with 100% penetrance, at a median of 49 weeks. As in human MLL-PTD and/or the FLT3-ITD AML, mouse blasts exhibited normal cytogenetics, decreased Mll-WT-to-Mll-PTD ratio, loss of the Flt3-WT allele, and increased total Flt3. Highlighting the adverse impact of FLT3-ITD dosage on patient survival, mice with homozygous Flt3-ITD alleles, Mll(PTD/WT):Flt3(ITD/ITD), demonstrated a nearly 30-week reduction in latency to overt AML. Here we demonstrate, for the first time, that Mll-PTD contributes to leukemogenesis as a gain-of-function mutation and describe a novel murine model closely recapitulating human AML.


Blood | 2013

Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells

Rossana Trotta; Li Chen; Stefan Costinean; Srirama Josyula; Bethany L. Mundy-Bosse; David Ciarlariello; Charlene Mao; Edward L. Briercheck; Kathleen McConnell; Anjali Mishra; Lianbo Yu; Carlo M. Croce; Michael A. Caligiuri

It is known that microRNAs (miRs) are involved in lymphocyte development, homeostasis, activation, and occasionally malignant transformation. In this study, a miR-155 transgene (tg) was driven to be overexpressed off of the lck promoter in order to assess its effects on natural killer (NK) cell biology in vivo. miR-155 tg mice have an increase in NK-cell number with an excess of the CD11b(low)CD27(high) NK subset, indicative of a halt in terminal NK-cell differentiation that proved to be intrinsic to the cell itself. The increase in NK cells results, in part, from improved survival in medium alone and enhanced expansion with endogenous or exogenous interleukin 15. Phenotypic and functional data from miR-155 tg NK cells showed constitutive activation and enhanced target cell conjugation, resulting in more potent antitumor activity in vitro and improved survival of lymphoma-bearing mice in vivo when compared with wild type NK cells. The enhanced NK-cell survival, expansion, activation, and tumor control that result from overexpression of miR-155 in NK cells could be explained, in part, via diminished expression of the inositol phosphatase SHIP1 and increased activation of ERK and AKT kinases. Thus, the regulation of miR-155 is important for NK-cell development, homeostasis, and activation.


Journal of Immunology | 2015

PTEN Is a Negative Regulator of NK Cell Cytolytic Function

Edward L. Briercheck; Rossana Trotta; Li Chen; Alex S. Hartlage; Jordan P. Cole; Tyler D. Cole; Charlene Mao; Pinaki P. Banerjee; Hsiang-Ting Hsu; Emily M. Mace; David Ciarlariello; Bethany L. Mundy-Bosse; Isabel Garcia-Cao; Steven D. Scoville; Lianbo Yu; Robert Pilarski; William E. Carson; Gustavo Leone; Pier Paolo Pandolfi; Jianhua Yu; Jordan S. Orange; Michael A. Caligiuri

Human NK cells are characterized by their ability to initiate an immediate and direct cytolytic response to virally infected or malignantly transformed cells. Within human peripheral blood, the more mature CD56dim NK cell efficiently kills malignant targets at rest, whereas the less mature CD56bright NK cells cannot. In this study, we show that resting CD56bright NK cells express significantly more phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein when compared with CD56dim NK cells. Consistent with this, forced overexpression of PTEN in NK cells resulted in decreased cytolytic activity, and loss of PTEN in CD56bright NK cells resulted in elevated cytolytic activity. Comparable studies in mice showed PTEN overexpression did not alter NK cell development or NK cell–activating and inhibitory receptor expression yet, as in humans, did decrease expression of downstream NK activation targets MAPK and AKT during early cytolysis of tumor target cells. Confocal microscopy revealed that PTEN overexpression disrupts the NK cell’s ability to organize immunological synapse components including decreases in actin accumulation, polarization of the microtubule organizing center, and the convergence of cytolytic granules. In summary, our data suggest that PTEN normally works to limit the NK cell’s PI3K/AKT and MAPK pathway activation and the consequent mobilization of cytolytic mediators toward the target cell and suggest that PTEN is among the active regulatory components prior to human NK cells transitioning from the noncytolytic CD56bright NK cell to the cytolytic CD56dim NK cells.


Journal of Immunology | 2017

IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-κB

Aaron R. Victor; Ansel P. Nalin; Wenjuan Dong; Susan McClory; Min Wei; Charlene Mao; Raleigh D. Kladney; Youssef Youssef; Wing Keung Chan; Edward L. Briercheck; Tiffany Hughes; Steven D. Scoville; Jason R. Pitarresi; Charlie Chen; Sarah Manz; Lai-Chu Wu; Jianying Zhang; Michael C. Ostrowski; Aharon G. Freud; Gustavo Leone; Michael A. Caligiuri; Jianhua Yu

Group 3 innate lymphoid cells (ILC3s) are important regulators of the immune system, maintaining homeostasis in the presence of commensal bacteria, but activating immune defenses in response to microbial pathogens. ILC3s are a robust source of IL-22, a cytokine critical for stimulating the antimicrobial response. We sought to identify cytokines that can promote proliferation and induce or maintain IL-22 production by ILC3s and determine a molecular mechanism for this process. We identified IL-18 as a cytokine that cooperates with an ILC3 survival factor, IL-15, to induce proliferation of human ILC3s, as well as induce and maintain IL-22 production. To determine a mechanism of action, we examined the NF-κB pathway, which is activated by IL-18 signaling. We found that the NF-κB complex signaling component, p65, binds to the proximal region of the IL22 promoter and promotes transcriptional activity. Finally, we observed that CD11c+ dendritic cells expressing IL-18 are found in close proximity to ILC3s in human tonsils in situ. Therefore, we identify a new mechanism by which human ILC3s proliferate and produce IL-22, and identify NF-κB as a potential therapeutic target to be considered in pathologic states characterized by overproduction of IL-18 and/or IL-22.

Collaboration


Dive into the Charlene Mao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Becknell

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Chen

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge