Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. Gersbach is active.

Publication


Featured researches published by Charles A. Gersbach.


Trends in Biotechnology | 2013

ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering

Thomas Gaj; Charles A. Gersbach; Carlos F. Barbas

Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. These chimeric nucleases are composed of programmable, sequence-specific DNA-binding modules linked to a nonspecific DNA cleavage domain. ZFNs and TALENs enable a broad range of genetic modifications by inducing DNA double-strand breaks that stimulate error-prone nonhomologous end joining or homology-directed repair at specific genomic locations. Here, we review achievements made possible by site-specific nuclease technologies and discuss applications of these reagents for genetic analysis and manipulation. In addition, we highlight the therapeutic potential of ZFNs and TALENs and discuss future prospects for the field, including the emergence of clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases.


Nature Biotechnology | 2015

Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers

Isaac B. Hilton; Anthony M. D'Ippolito; Christopher M. Vockley; Pratiksha I. Thakore; Gregory E. Crawford; Timothy E. Reddy; Charles A. Gersbach

Technologies that enable targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we describe a programmable, CRISPR-Cas9-based acetyltransferase consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. The fusion protein catalyzes acetylation of histone H3 lysine 27 at its target sites, leading to robust transcriptional activation of target genes from promoters and both proximal and distal enhancers. Gene activation by the targeted acetyltransferase was highly specific across the genome. In contrast to previous dCas9-based activators, the acetyltransferase activates genes from enhancer regions and with an individual guide RNA. We also show that the core p300 domain can be fused to other programmable DNA-binding proteins. These results support targeted acetylation as a causal mechanism of transactivation and provide a robust tool for manipulating gene regulation.


Nature Methods | 2013

RNA-guided gene activation by CRISPR-Cas9–based transcription factors

Pablo Perez-Pinera; D. Dewran Kocak; Christopher M. Vockley; Andrew F. Adler; Ami M. Kabadi; Lauren R. Polstein; Pratiksha I. Thakore; Katherine A. Glass; David G. Ousterout; Kam W. Leong; Farshid Guilak; Gregory E. Crawford; Timothy E. Reddy; Charles A. Gersbach

Technologies for engineering synthetic transcription factors have enabled many advances in medical and scientific research. In contrast to existing methods based on engineering of DNA-binding proteins, we created a Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules. Coexpression of this transactivator and combinations of guide RNAs in human cells induced specific expression of endogenous target genes, demonstrating a simple and versatile approach for RNA-guided gene activation.


Science | 2016

In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

Christopher E. Nelson; Chady H. Hakim; David G. Ousterout; Pratiksha I. Thakore; Eirik A. Moreb; Ruth M. Castellanos Rivera; Sarina Madhavan; Xiufang Pan; F. Ann Ran; Winston X. Yan; Aravind Asokan; Feng Zhang; Dongsheng Duan; Charles A. Gersbach

Editing can help build stronger muscles Much of the controversy surrounding the gene-editing technology called CRISPR/Cas9 centers on the ethics of germline editing of human embryos to correct disease-causing mutations. For certain disorders such as muscular dystrophy, it may be possible to achieve therapeutic benefit by editing the faulty gene in somatic cells. In proof-of-concept studies, Long et al., Nelson et al., and Tabebordbar et al. used adeno-associated virus-9 to deliver the CRISPR/Cas9 gene-editing system to young mice with a mutation in the gene coding for dystrophin, a muscle protein deficient in patients with Duchenne muscular dystrophy. Gene editing partially restored dystrophin protein expression in skeletal and cardiac muscle and improved skeletal muscle function. Science, this issue p. 400, p. 403, p. 407 Gene editing via CRISPR-Cas9 restores dystrophin protein and improves muscle function in mouse models of muscular dystrophy. Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9–based genome editing as a potential therapy to treat DMD.


Nature Chemical Biology | 2015

A light-inducible CRISPR-Cas9 system for control of endogenous gene activation

Lauren R. Polstein; Charles A. Gersbach

Optogenetic systems enable precise spatial and temporal control of cell behavior. We engineered a light-activated CRISPR/Cas9 effector (LACE) system that induces transcription of endogenous genes in the presence of blue light. This was accomplished by fusing the light-inducible heterodimerizing proteins CRY2 and CIB1 to a transactivation domain and the catalytically inactive dCas9, respectively. The versatile LACE system can be easily directed to new DNA sequences for the dynamic regulation of endogenous genes.


Nature Methods | 2015

Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements

Pratiksha I. Thakore; Anthony M. D'Ippolito; Lingyun Song; Alexias Safi; Nishkala K. Shivakumar; Ami M. Kabadi; Timothy E. Reddy; Gregory E. Crawford; Charles A. Gersbach

Epigenome editing with the CRISPR (clustered, regularly interspaced, short palindromic repeats)-Cas9 platform is a promising technology for modulating gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms of gene regulation. Fusions of nuclease-inactive dCas9 to the Krüppel-associated box (KRAB) repressor (dCas9-KRAB) can silence target gene expression, but the genome-wide specificity and the extent of heterochromatin formation catalyzed by dCas9-KRAB are not known. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates the expression of multiple globin genes, and observed highly specific induction of H3K9 trimethylation (H3K9me3) at the enhancer and decreased chromatin accessibility of both the enhancer and its promoter targets. Targeted epigenetic modification of HS2 silenced the expression of multiple globin genes, with minimal off-target changes in global gene expression. These results demonstrate that repression mediated by dCas9-KRAB is sufficiently specific to disrupt the activity of individual enhancers via local modification of the epigenome.


Nature Communications | 2015

Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy

David G. Ousterout; Ami M. Kabadi; Pratiksha I. Thakore; William H. Majoros; Timothy E. Reddy; Charles A. Gersbach

The CRISPR/Cas9 genome editing platform is a promising technology to correct the genetic basis of hereditary diseases. The versatility, efficiency, and multiplexing capabilities of the CRISPR/Cas9 system enable a variety of otherwise challenging gene correction strategies. Here we use the CRISPR/Cas9 system to restore the expression of the dystrophin gene in cells carrying dystrophin mutations that cause Duchenne muscular dystrophy (DMD). We design single or multiplexed sgRNAs to restore the dystrophin reading frame by targeting the mutational hotspot at exons 45–55 and introducing shifts within exons or deleting one or more exons. Following gene editing in DMD patient myoblasts, dystrophin expression is restored in vitro. Human dystrophin is also detected in vivo after transplantation of genetically corrected patient cells into immunodeficient mice. Importantly, the unique multiplex gene editing capabilities of the CRISPR/Cas9 system facilitate the generation of a single large deletion that can correct up to 62% of DMD mutations.


Nature Methods | 2013

Synergistic and tunable human gene activation by combinations of synthetic transcription factors

Pablo Perez-Pinera; David G. Ousterout; Jonathan M. Brunger; Alicia M Farin; Katherine A. Glass; Farshid Guilak; Gregory E. Crawford; Alexander J. Hartemink; Charles A. Gersbach

Mammalian genes are regulated by the cooperative and synergistic actions of many transcription factors. In this study we recapitulate this complex regulation in human cells by targeting endogenous gene promoters, including regions of closed chromatin upstream of silenced genes, with combinations of engineered transcription activator–like effectors (TALEs). These combinations of TALE transcription factors induced substantial gene activation and allowed tuning of gene expression levels that will broadly enable synthetic biology, gene therapy and biotechnology.


Molecular Therapy | 2016

Genome-editing Technologies for Gene and Cell Therapy

Morgan L. Maeder; Charles A. Gersbach

Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.


Nature Methods | 2016

Editing the epigenome: technologies for programmable transcription and epigenetic modulation

Pratiksha I. Thakore; Joshua B Black; Isaac B. Hilton; Charles A. Gersbach

Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.

Collaboration


Dive into the Charles A. Gersbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrés J. García

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos F. Barbas

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge