Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher E. Nelson is active.

Publication


Featured researches published by Christopher E. Nelson.


Science | 2016

In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

Christopher E. Nelson; Chady H. Hakim; David G. Ousterout; Pratiksha I. Thakore; Eirik A. Moreb; Ruth M. Castellanos Rivera; Sarina Madhavan; Xiufang Pan; F. Ann Ran; Winston X. Yan; Aravind Asokan; Feng Zhang; Dongsheng Duan; Charles A. Gersbach

Editing can help build stronger muscles Much of the controversy surrounding the gene-editing technology called CRISPR/Cas9 centers on the ethics of germline editing of human embryos to correct disease-causing mutations. For certain disorders such as muscular dystrophy, it may be possible to achieve therapeutic benefit by editing the faulty gene in somatic cells. In proof-of-concept studies, Long et al., Nelson et al., and Tabebordbar et al. used adeno-associated virus-9 to deliver the CRISPR/Cas9 gene-editing system to young mice with a mutation in the gene coding for dystrophin, a muscle protein deficient in patients with Duchenne muscular dystrophy. Gene editing partially restored dystrophin protein expression in skeletal and cardiac muscle and improved skeletal muscle function. Science, this issue p. 400, p. 403, p. 407 Gene editing via CRISPR-Cas9 restores dystrophin protein and improves muscle function in mouse models of muscular dystrophy. Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9–based genome editing as a potential therapy to treat DMD.


Journal of Visualized Experiments | 2013

Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs.

Brian C. Evans; Christopher E. Nelson; Shann S. Yu; Kelsey R. Beavers; Arnold J. Kim; Hongmei Li; Heather M. Nelson; Todd D. Giorgio; Craig L. Duvall

Phospholipid bilayers that constitute endo-lysosomal vesicles can pose a barrier to delivery of biologic drugs to intracellular targets. To overcome this barrier, a number of synthetic drug carriers have been engineered to actively disrupt the endosomal membrane and deliver cargo into the cytoplasm. Here, we describe the hemolysis assay, which can be used as rapid, high-throughput screen for the cytocompatibility and endosomolytic activity of intracellular drug delivery systems. In the hemolysis assay, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular, early endosomal, and late endo-lysosomal environments. Following a centrifugation step to pellet intact red blood cells, the amount of hemoglobin released into the medium is spectrophotometrically measured (405 nm for best dynamic range). The percent red blood cell disruption is then quantified relative to positive control samples lysed with a detergent. In this model system the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. The desired result is negligible hemolysis at physiologic pH (7.4) and robust hemolysis in the endo-lysosomal pH range from approximately pH 5-6.8.


Journal of Controlled Release | 2012

Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release

Mukesh K. Gupta; Travis A. Meyer; Christopher E. Nelson; Craig L. Duvall

A new micelle drug carrier that consists of a diblock polymer of propylene sulfide (PS) and N,N-dimethylacrylamide (poly(PS₇₄-b-DMA₃₁₀)) has been synthesized and characterized for site-specific release of hydrophobic drugs to sites of inflammation. Propylene sulfide was first polymerized using a thioacyl group transfer (TAGT) method with the RAFT chain transfer agent (CTA) 4-cyano-4-(ethylsulfanylthiocarbonylsulfanyl) pentanoic acid (CEP), and the resultant poly(PS₇₄-CEP) macro-CTA was used to polymerize a second polymer block of DMA using reversible addition-fragmentation chain transfer (RAFT). The formation of the poly(PS₇₄-b-DMA₃₁₀) diblock polymer was confirmed by ¹H NMR spectra and gel permeation chromatography (GPC). Poly(PS₇₄-b-DMA₃₁₀) formed 100 nm micelles in aqueous media as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Micelles loaded with the model drugs Nile red and DiO were used to demonstrate the ROS-dependent drug release mechanism of these micelles following treatment with hydrogen peroxide (H₂O₂), 3-morpholinosydnonimine (SIN-1), and peroxynitrite. These oxidants were found to oxidize the micelle PPS core, making it more hydrophilic and triggering micelle disassembly and cargo release. Delivery of poly(PS₇₄-b-DMA₃₁₀) micelles dual-loaded with the Förster Resonance Energy Transfer (FRET) fluorophore pair DiI and DiO was used to prove that endogenous oxidants generated by lipopolysaccharide (LPS)-treated RAW 264.7 macrophages significantly increased release of nanocarrier contents relative to macrophages that were not activated. In vitro studies also demonstrated that the poly(PS₇₄-b-DMA₃₁₀) micelles were cytocompatible across a broad range of concentrations. These combined data suggest that the poly(PS₇₄-b-DMA₃₁₀) micelles synthesized using a combination of TAGT and RAFT have significant potential for site-specific drug delivery to tissues with high levels of oxidative stress.


Advanced Materials | 2014

Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo.

Christopher E. Nelson; Arnold J. Kim; Elizabeth J. Adolph; Mukesh K. Gupta; Fang Yu; Kyle M. Hocking; Jeffrey M. Davidson; Scott A. Guelcher; Craig L. Duvall

A system has been engineered for temporally controlled delivery of siRNA from biodegradable tissue regenerative scaffolds. Therapeutic application of this approach to silence prolyl hydroxylase domain 2 promoted expression of pro-angiogenic genes controlled by HIF1α and enhanced scaffold vascularization in vivo. This technology provides a new standard for efficient and controllable gene silencing to modulate host response within regenerative biomaterials.


Biomaterials | 2012

Sustained local delivery of siRNA from an injectable scaffold

Christopher E. Nelson; Mukesh K. Gupta; Elizabeth J. Adolph; Joshua M. Shannon; Scott A. Guelcher; Craig L. Duvall

Controlled gene silencing technologies have significant, unrealized potential for use in tissue regeneration applications. The design described herein provides a means to package and protect siRNA within pH-responsive, endosomolytic micellar nanoparticles (si-NPs) that can be incorporated into nontoxic, biodegradable, and injectable polyurethane (PUR) tissue scaffolds. The si-NPs were homogeneously incorporated throughout the porous PUR scaffolds, and they were shown to be released via a diffusion-based mechanism for over three weeks. The siRNA-loaded micelles were larger but retained nanoparticulate morphology of approximately 100 nm diameter following incorporation into and release from the scaffolds. PUR scaffold releasate collected in vitro in PBS at 37 °C for 1-4 days was able to achieve dose-dependent siRNA-mediated silencing with approximately 50% silencing achieved of the model gene GAPDH in NIH3T3 mouse fibroblasts. This promising platform technology provides both a research tool capable of probing the effects of local gene silencing and a potentially high-impact therapeutic approach for sustained, local silencing of deleterious genes within tissue defects.


Biomaterials | 2015

Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers.

Martina Miteva; Kellye C. Kirkbride; Kameron V. Kilchrist; Thomas A. Werfel; Hongmei Li; Christopher E. Nelson; Mukesh K. Gupta; Todd D. Giorgio; Craig L. Duvall

A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed micelle zeta potential and rate of cellular internalization. Although mixed micelles were internalized more slowly, they generally produced similar gene silencing bioactivity (∼ 80% or greater) in MDA-MB-231 breast cancer cells as the micelles containing no PEG (100 D/no PEG). The mechanistic explanation for the potent bioactivity of the promising 50 mol% PEG-b-DPB/50 mol% pD-b-pDPB (50 D) mixed micelle formulation, despite its relatively low rate of cellular internalization, was further investigated as a function of PEG molecular weight (5 k, 10 k, or 20 k PEG). Results indicated that, although larger molecular weight PEG decreased cellular internalization, it improved cytoplasmic bioavailability due to increased intracellular unpackaging (quantitatively measured via FRET) and endosomal release. When delivered intravenously in vivo, 50 D mixed micelles with a larger molecular weight PEG in the corona also demonstrated significantly improved blood circulation half-life (17.8 min for 20 k PEG micelles vs. 4.6 min for 5 kDa PEG micelles) and a 4-fold decrease in lung accumulation. These studies provide new mechanistic insights into the functional effects of mixed micelle-based approaches to nanocarrier surface PEGylation. Furthermore, the ideal mixed micelle formulation identified (50 D/20 k PEG) demonstrated desirable intracellular and systemic pharmacokinetics and thus has strong potential for in vivo therapeutic use.


Annual Review of Chemical and Biomolecular Engineering | 2016

Engineering Delivery Vehicles for Genome Editing.

Christopher E. Nelson; Charles A. Gersbach

The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.


Advanced Drug Delivery Reviews | 2015

MiRNA inhibition in tissue engineering and regenerative medicine.

Kelsey R. Beavers; Christopher E. Nelson; Craig L. Duvall

MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.


Journal of Controlled Release | 2015

Technologies for controlled, local delivery of siRNA

Samantha M. Sarett; Christopher E. Nelson; Craig L. Duvall

The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While locally injected or topically applied siRNA has progressed into numerous clinical trials, an enormous opportunity exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation.


Biomacromolecules | 2015

Dual MMP7-Proximity-Activated and Folate Receptor-Targeted Nanoparticles for siRNA Delivery

Hongmei Li; Martina Miteva; Kellye C. Kirkbride; Ming J. Cheng; Christopher E. Nelson; Elaine M. Simpson; Mukesh K. Gupta; Craig L. Duvall; Todd D. Giorgio

A dual-targeted siRNA nanocarrier has been synthesized and validated that is selectively activated in environments where there is colocalization of two breast cancer hallmarks, elevated matrix metalloproteinase (MMP) activity and folate receptor overexpression. This siRNA nanocarrier is self-assembled from two polymers containing the same pH-responsive, endosomolytic core-forming block but varying hydrophilic, corona-forming blocks. The corona block of one polymer consists of a 2 kDa PEG attached to a terminal folic acid (FA); the second polymer contains a larger (Y-shaped, 20 kDa) PEG attached to the core block by a proximity-activated targeting (PAT), MMP7-cleavable peptide. In mixed micelle smart polymer nanoparticles (SPNs) formed from the FA- and PAT-based polymers, the proteolytically removable PEG on the PAT polymers shields nonspecific SPN interactions with cells or proteins. When the PAT element is cleaved within an MMP-rich environment, the PEG shielding is removed, exposing the underlying FA and making it accessible for folate receptor-mediated SPN uptake. Characterization of mixed micelles prepared from these two polymers revealed that uptake and siRNA knockdown bioactivity of a 50% FA/50% PAT formulation was dependent on both proteolytic activation and FA receptor engagement. MMP activation and delivery of this formulation to breast cancer cells expressing the FA receptor achieved greater than 50% protein-level knockdown of a model gene with undetectable cytotoxicity. This modular nanoparticle design represents a new paradigm in cell-selective siRNA delivery and allows for stoichiometric tuning of dual-targeting components to achieve superior targeting specificity.

Collaboration


Dive into the Christopher E. Nelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge