Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. Laughton is active.

Publication


Featured researches published by Charles A. Laughton.


Nucleic Acids Research | 2010

A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA

Richard Lavery; Krystyna Zakrzewska; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Surjit B. Dixit; B. Jayaram; Filip Lankaš; Charles A. Laughton; John H. Maddocks; Alexis Michon; Roman Osman; Modesto Orozco; Alberto Pérez; Tanya Singh; Nada Spackova; Jiri Sponer

It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.


Nature Methods | 2016

PARMBSC1: A refined force-field for DNA simulations

Ivan Ivani; Pablo D. Dans; Agnes Noy; Alberto Pérez; Ignacio Faustino; Jürgen Walther; Pau Andrio; Ramon Goni; Alexandra Balaceanu; Guillem Portella; Federica Battistini; Josep Lluís Gelpí; Carlos González; Michele Vendruscolo; Charles A. Laughton; Sarah A. Harris; David A. Case; Modesto Orozco

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Journal of Chemical Theory and Computation | 2006

Essential Dynamics: A Tool for Efficient Trajectory Compression and Management

Tim Meyer; Carles Ferrer-Costa; Alberto Perez; Manuel Rueda; Axel Bidon-Chanal; F. J. Luque; Charles A. Laughton; Modesto Orozco

We present a simple method for compression and management of very large molecular dynamics trajectories. The approach is based on the projection of the Cartesian snapshots collected along the trajectory into an orthogonal space defined by the eigenvectors obtained by diagonalization of the covariance matrix. The transformation is mathematically exact when the number of eigenvectors equals 3N-6 (N being the number of atoms), and in practice very accurate even when the number of eigenvectors is much smaller, permitting a dramatic reduction in the size of trajectory files. In addition, we have examined the ability of the method, when combined with interpolation, to recover dense samplings (snapshots collected at a high frequency) from more sparse (lower frequency) data as a method for further data compression. Finally, we have investigated the possibility of using the approach when extrapolating the behavior of the system to times longer than the original simulation period. Overall our results suggest that the method is an attractive alternative to current approaches for including dynamic information in static structure files such as those deposited in the Protein Data Bank.


Nucleic Acids Research | 2014

μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA.

Marco Pasi; John H. Maddocks; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Pablo D. Dans; B. Jayaram; Filip Lankaš; Charles A. Laughton; Jonathan S. Mitchell; Roman Osman; Modesto Orozco; Alberto Pérez; Daiva Petkevičiūtė; Nada Spackova; Jiri Sponer; Krystyna Zakrzewska; Richard Lavery

We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.


Oncology | 2010

Acquired Resistance to Temozolomide in Glioma Cell Lines: Molecular Mechanisms and Potential Translational Applications

Jihong Zhang; Malcolm F. G. Stevens; Charles A. Laughton; Srinivasan Madhusudan; Tracey D. Bradshaw

Treatment for glioblastoma multiforme includes the alkylating agent temozolomide combined with ionizing radiation. Persistent O6-guanine methylation by temozolomide in O6-methylguanine methyl transferase negative tumors causes cytotoxic lesions recognized by DNA mismatch repair, triggering apoptosis. Resistance (intrinsic or acquired) presents obstacles to successful temozolomide treatment, limiting drug efficacy and life expectancy. Two glioma cell lines, SNB19 and U373, sensitive to temozolomide (GI50 values 36 and 68 µM, respectively) were exposed to increasing temozolomide concentrations (1–100 µM). Variant cell lines (SNB19VR, U373VR) were generated that displayed acquired temozolomide resistance (GI50 values 280 and 289 µM, respectively). Cross-resistance to mitozolomide was observed in U373VR cells only. In clonogenic and MTT assays, methylguanine methyltransferase (MGMT) depletion using O6-benzylguanine sensitized U373VR cells to temozolomide, indicating the resistance mechanism involves MGMT re-expression. Indeed, Western blot analyses revealed MGMT protein in cell lysates. In SNB19VR cells, down-regulation of MSH6 message and protein expression may confer temozolomide tolerance. Inhibition of poly(ADP-ribose) polymerase-1 (a key base excision repair (BER) enzyme) partially restored sensitivity, and DNA repair gene arrays demonstrated up-regulation (>5-fold) of BER gene NTL1 in SNB19VR cells. In conclusion, we have developed two glioma cell lines whose distinct mechanisms of acquired resistance to temozolomide, involving expression of MGMT, or inactivation of DNA mismatch repair and recruitment of BER enzymes, are consistent with clinical observations. These cell lines provide valuable models for the development of strategies to combat temozolomide resistance.


Cancer Research | 2005

Elucidation of thioredoxin as a molecular target for antitumor quinols

Tracey D. Bradshaw; Charles S. Matthews; Jennifer C. Cookson; Eng-Hui Chew; Manish B. Shah; Kevin Bailey; Anne Monks; Erik Harris; Andrew D. Westwell; Geoffrey Wells; Charles A. Laughton; Malcolm F. G. Stevens

Heteroaromatic quinols 4-(benzothiazol-2-yl)-4-hydroxycyclohexa-2,5-dienone (1) and 4-(1-benzenesulfonyl-1H-indol-2-yl)-4-hydroxycyclohexa-2,5-dienone (2) exhibit potent and selective antitumor activity against colon, renal, and breast carcinoma cell lines in vitro (GI50 < 500 nmol/L). In vivo growth inhibition of renal, colon, and breast xenografts has been observed. Profound G2-M cell cycle block accompanied down-regulation of cdk1 gene transcription was corroborated by decreased CDK1 protein expression following treatment of HCT 116 cells with growth inhibitory concentrations of 1 or 2. The chemical structure of the quinol pharmacophore 4-(hydroxycyclohexa-2,5-dienone) suggested that these novel agents would readily react with nucleophiles in a double Michael (beta-carbon) addition. Indeed, COMPARE analysis within the National Cancer Institute database revealed a number of chemically related quinone derivatives that could potentially react with sulfur nucleophiles in a similar manner and suggested that thioredoxin/thioredoxin reductase signal transduction could be a putative target. Molecular modeling predicted covalent irreversible binding between quinol analogues and cysteine residues 32 and 35 of thioredoxin, thereby inhibiting enzyme activity. Binding has been confirmed, via mass spectrometry, between reduced human thioredoxin and 1. Microarray analyses of untreated HCT 116 cells and those exposed to either 1 (1 micromol/L) or 2 (500 nmol/L and 1 micromol/L) determined that of > or =10,000 cancer-related genes, expression of thioredoxin reductase was up-regulated >3-fold. Furthermore, quinols 1 and 2 inhibited insulin reduction, catalyzed by thioredoxin/thioredoxin reductase signaling in a dose-dependent manner (IC50 < 6 micromol/L). Results are consistent with a mechanism of action of novel antitumor quinols involving inhibition of the small redox protein thioredoxin.


Journal of Medicinal Chemistry | 2008

Antitumor Polycyclic Acridines. 20. Search for DNA Quadruplex Binding Selectivity in a Series of 8,13-Dimethylquino[4,3,2-kl]acridinium Salts: Telomere-Targeted Agents

Mai-Kim Cheng; Chetna Modi; Jennifer C. Cookson; Ian Hutchinson; Robert Heald; Andrew J. McCarroll; Sotiris Missailidis; Farial A. Tanious; W. David Wilson; Jean-Louis Mergny; Charles A. Laughton; Malcolm F. G. Stevens

The growth-inhibitory activities of an extensive series of quaternized quino[4,3,2- kl]acridinium salts against tumor cell lines in vitro have been measured and their biological properties interpreted in the light of differential binding to different DNA isoforms. Selectivity for quadruplex DNA binding and stabilization by compounds were explored through an array of methods: UV absorption and fluorescence emission spectroscopy, surface plasmon resonance, and competition dialysis. Quadruplex DNA interaction was further characterized through FRET and DNA polymerase arrest assays. Telomerase inhibition, inferred from the TRAP assay, is attributed to quadruplex stabilization, supported by the strong correlation (R(2) = 0.81) across the series between quadruplex DNA binding affinity and TRAP inhibition potency. Growth inhibition potency in the NCI60 human tumor cell line panel is more marked in compounds with greater DNA duplex binding affinity (R(2) = 0.82). Quantification of relative quadruplex and duplex binding affinity constants puts some of these ligands among the most selective quadruplex DNA interactive agents reported to date.


International Journal of Cancer | 2012

Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors

Rebeka Sultana; Daniel R. McNeill; Rachel Abbotts; Mohammed Z. Mohammed; Małgorzata Z. Zdzienicka; Haitham Qutob; Claire Seedhouse; Charles A. Laughton; Peter Fischer; Poulam M. Patel; David M. Wilson; Srinivasan Madhusudan

An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In this study, we have investigated the ability of APE1 inhibitors to induce synthetic lethality (SL) in a panel of DNA double‐strand break (DSB) repair deficient and proficient cells; i) Chinese hamster (CH) cells: BRCA2 deficient (V‐C8), ATM deficient (V‐E5), wild type (V79) and BRCA2 revertant [V‐C8(Rev1)]. ii) Human cancer cells: BRCA1 deficient (MDA‐MB‐436), BRCA1 proficient (MCF‐7), BRCA2 deficient (CAPAN‐1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested SL in CH ovary cells expressing a dominant‐negative form of APE1 (E8 cells) using ATM inhibitors and DNA‐PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. SL was also demonstrated in CH cells expressing a dominant‐negative form of APE1 treated with ATM or DNA‐PKcs inhibitors. We conclude that APE1 is a promising SL target in cancer.


Nucleic Acids Research | 2011

Atomistic simulations reveal bubbles, kinks and wrinkles in supercoiled DNA

J. S. Mitchell; Charles A. Laughton; Sarah A. Harris

Although DNA is frequently bent and supercoiled in the cell, much of the available information on DNA structure at the atomistic level is restricted to short linear sequences. We report atomistic molecular dynamics (MD) simulations of a series of DNA minicircles containing between 65 and 110 bp which we compare with a recent biochemical study of structural distortions in these tight DNA loops. We have observed a wealth of non-canonical DNA structures such as kinks, denaturation bubbles and wrinkled conformations that form in response to bending and torsional stress. The simulations show that bending alone is sufficient to induce the formation of kinks in circles containing only 65 bp, but we did not observe any defects in simulations of larger torsionally relaxed circles containing 110 bp over the same MD timescales. We also observed that under-winding in minicircles ranging in size from 65 to 110 bp leads to the formation of single stranded bubbles and wrinkles. These calculations are used to assess the ability of atomistic MD simulations to determine the structure of bent and supercoiled DNA.


Journal of Microscopy | 2000

Atomic force microscopy studies of intercalation‐induced changes in plasmid DNA tertiary structure

Lisa H. Pope; M.C. Davies; Charles A. Laughton; Clive J. Roberts; S. J. B. Tendler; Paul Williams

Structural transitions in the tertiary structure of plasmid DNA have been investigated using atomic force microscopy. Changes in superhelical stress were induced by ethidium bromide intercalation, and conformational effects monitored by recording topographic images from DNA complexes of various ethidium bromide : base pair stoichiometry. Significant changes in the tertiary structure of individual DNA molecules were observed with increasing ethidium bromide concentration. The first distinct conformational transition was from a predominantly relaxed structure to one consisting solely of toroidal supercoils. A further increase in ethidium bromide concentration resulted in the formation of regions of plectonemic supercoiling. The ratio of plectonemic : toroidal supercoiling gradually increased until an extremely tightly interwound structure of solely plectonemic supercoiling was finally adopted. The toroidal form of supercoiling observed in this study is unusual as both atomic force microscopy and electron microscopy techniques have previously shown that plectonemic supercoiling is the predominant form adopted by plasmid DNA.

Collaboration


Dive into the Charles A. Laughton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Fischer

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Stephen Neidle

University College London

View shared research outputs
Top Co-Authors

Avatar

Chetna Modi

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Mark S. Searle

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge