Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles D. Brummitt is active.

Publication


Featured researches published by Charles D. Brummitt.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Suppressing cascades of load in interdependent networks

Charles D. Brummitt; Raissa M. D'Souza; Elizabeth Leicht

Understanding how interdependence among systems affects cascading behaviors is increasingly important across many fields of science and engineering. Inspired by cascades of load shedding in coupled electric grids and other infrastructure, we study the Bak–Tang–Wiesenfeld sandpile model on modular random graphs and on graphs based on actual, interdependent power grids. Starting from two isolated networks, adding some connectivity between them is beneficial, for it suppresses the largest cascades in each system. Too much interconnectivity, however, becomes detrimental for two reasons. First, interconnections open pathways for neighboring networks to inflict large cascades. Second, as in real infrastructure, new interconnections increase capacity and total possible load, which fuels even larger cascades. Using a multitype branching process and simulations we show these effects and estimate the optimal level of interconnectivity that balances their trade-offs. Such equilibria could allow, for example, power grid owners to minimize the largest cascades in their grid. We also show that asymmetric capacity among interdependent networks affects the optimal connectivity that each prefers and may lead to an arms race for greater capacity. Our multitype branching process framework provides building blocks for better prediction of cascading processes on modular random graphs and on multitype networks in general.


Physical Review E | 2012

Multiplexity-facilitated cascades in networks.

Charles D. Brummitt; Kyu-Min Lee; K. I. Goh

Elements of networks interact in many ways, so modeling them with graphs requires multiple types of edges (or network layers). Here we show that such multiplex networks are generically more vulnerable to global cascades than simplex networks. We generalize the threshold cascade model [Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)] to multiplex networks, in which a node activates if a sufficiently large fraction of neighbors in any layer are active. We show that both combining layers (i.e., realizing other interactions play a role) and splitting a network into layers (i.e., recognizing distinct kinds of interactions) facilitate cascades. Notably, layers unsusceptible to global cascades can cooperatively achieve them if coupled. On one hand, this suggests fundamental limitations on predicting cascades without full knowledge of a systems multiplexity; on the other hand, it offers feasible means to control cascades by introducing or removing sparse layers in an existing network.


Physical Review E | 2014

Threshold cascades with response heterogeneity in multiplex networks.

Kyu-Min Lee; Charles D. Brummitt; K. I. Goh

Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transdisciplinary electric power grid science

Charles D. Brummitt; Paul Hines; Ian Dobson; Cristopher Moore; Raissa M. D'Souza

When a tenth of humanity lost power over 2 days in India in July 2012, technical failure was not the only culprit. Like many recent blackouts, this outage resulted from couplings among systems, including extreme weather exacerbated by climate change, human operator errors, suboptimal policies, and market forces. Predictions that climate change intensifies droughts and tropical cyclones presage more weather-induced blackouts. Even without weather disasters, small disturbances can trigger cascading failures, and so can ill-designed electricity markets (1) and dependence on cyber infrastructure.


Physical Review Letters | 2013

Controlling Self-Organizing Dynamics on Networks Using Models that Self-Organize

Pierre-André Noël; Charles D. Brummitt; Raissa M. D'Souza

Controlling self-organizing systems is challenging because the system responds to the controller. Here, we develop a model that captures the essential self-organizing mechanisms of Bak-Tang-Wiesenfeld (BTW) sandpiles on networks, a self-organized critical (SOC) system. This model enables studying a simple control scheme that determines the frequency of cascades and that shapes systemic risk. We show that optimal strategies exist for generic cost functions and that controlling a subcritical system may drive it to criticality. This approach could enable controlling other self-organizing systems.


Physical Review E | 2015

Cascades in multiplex financial networks with debts of different seniority

Charles D. Brummitt; Teruyoshi Kobayashi

The seniority of debt, which determines the order in which a bankrupt institution repays its debts, is an important and sometimes contentious feature of financial crises, yet its impact on systemwide stability is not well understood. We capture seniority of debt in a multiplex network, a graph of nodes connected by multiple types of edges. Here an edge between banks denotes a debt contract of a certain level of seniority. Next we study cascading default. There exist multiple kinds of bankruptcy, indexed by the highest level of seniority at which a bank cannot repay all its debts. Self-interested banks would prefer that all their loans be made at the most senior level. However, mixing debts of different seniority levels makes the system more stable in that it shrinks the set of network densities for which bankruptcies spread widely. We compute the optimal ratio of senior to junior debts, which we call the optimal seniority ratio, for two uncorrelated Erdős-Rényi networks. If institutions erode their buffer against insolvency, then this optimal seniority ratio rises; in other words, if default thresholds fall, then more loans should be senior. We generalize the analytical results to arbitrarily many levels of seniority and to heavy-tailed degree distributions.


PLOS ONE | 2014

Inside Money, Procyclical Leverage, and Banking Catastrophes

Charles D. Brummitt; Rajiv Sethi; Duncan J. Watts

We explore a model of the interaction between banks and outside investors in which the ability of banks to issue inside money (short-term liabilities believed to be convertible into currency at par) can generate a collapse in asset prices and widespread bank insolvency. The banks and investors share a common belief about the future value of certain long-term assets, but they have different objective functions; changes to this common belief result in portfolio adjustments and trade. Positive belief shocks induce banks to buy risky assets from investors, and the banks finance those purchases by issuing new short-term liabilities. Negative belief shocks induce banks to sell assets in order to reduce their chance of insolvency to a tolerably low level, and they supply more assets at lower prices, which can result in multiple market-clearing prices. A sufficiently severe negative shock causes the set of equilibrium prices to contract (in a manner given by a cusp catastrophe), causing prices to plummet discontinuously and banks to become insolvent. Successive positive and negative shocks of equal magnitude do not cancel; rather, a banking catastrophe can occur even if beliefs simply return to their initial state. Capital requirements can prevent crises by curtailing the expansion of balance sheets when beliefs become more optimistic, but they can also force larger price declines. Emergency asset price supports can be understood as attempts by a central bank to coordinate expectations on an equilibrium with solvency.


Physical Review E | 2014

Bottom-up model of self-organized criticality on networks

Pierre-André Noël; Charles D. Brummitt; Raissa M. D'Souza

The Bak-Tang-Wiesenfeld (BTW) sandpile process is an archetypal, stylized model of complex systems with a critical point as an attractor of their dynamics. This phenomenon, called self-organized criticality, appears to occur ubiquitously in both nature and technology. Initially introduced on the two-dimensional lattice, the BTW process has been studied on network structures with great analytical successes in the estimation of macroscopic quantities, such as the exponents of asymptotically power-law distributions. In this article, we take a microscopic perspective and study the inner workings of the process through both numerical and rigorous analysis. Our simulations reveal fundamental flaws in the assumptions of past phenomenological models, the same models that allowed accurate macroscopic predictions; we mathematically justify why universality may explain these past successes. Next, starting from scratch, we obtain microscopic understanding that enables mechanistic models; such models can, for example, distinguish a cascades area from its size. In the special case of a 3-regular network, we use self-consistency arguments to obtain a zero-parameter mechanistic (bottom-up) approximation that reproduces nontrivial correlations observed in simulations and that allows the study of the BTW process on networks in regimes otherwise prohibitively costly to investigate. We then generalize some of these results to configuration model networks and explain how one could continue the generalization. The numerous tools and methods presented herein are known to enable studying the effects of controlling the BTW process and other self-organizing systems. More broadly, our use of multitype branching processes to capture information bouncing back and forth in a network could inspire analogous models of systems in which consequences spread in a bidirectional fashion.


Networks of Networks: The Last Frontier of Complexity | 2014

Modeling Interdependent Networks as Random Graphs: Connectivity and Systemic Risk

R. M. D’Souza; Charles D. Brummitt; Elizabeth Leicht

Idealized models of interconnected networks can provide a laboratory for studying the consequences of interdependence in real-world networks, in particular those networks constituting society’s critical infrastructure. Here we show how random graph models of connectivity between networks can provide insights into shifts in percolation properties and into systemic risk. Tradeoffs abound in many of our results. For instance, edges between networks confer global connectivity using relatively few edges, and that connectivity can be beneficial in situations like communication or supplying resources, but it can prove dangerous if epidemics were to spread on the network. For a specific model of cascades of load in the system (namely, the sandpile model), we find that each network minimizes its risk of undergoing a large cascade if it has an intermediate amount of connectivity to other networks. Thus, connections among networks confer benefits and costs that balance at optimal amounts. However, what is optimal for minimizing cascade risk in one network is suboptimal for minimizing risk in the collection of networks. This work provides tools for modeling interconnected networks (or single networks with mesoscopic structure), and it provides hypotheses on tradeoffs in interdependence and their implications for systemic risk.


Nature Human Behaviour | 2017

Contagious disruptions and complexity traps in economic development

Charles D. Brummitt; Kenan Huremović; Paolo Pin; Matthew H. Bonds; Fernando Vega-Redondo

Poor economies not only produce less; they typically produce things that involve fewer inputs and fewer intermediate steps. Yet the supply chains of poor countries face more frequent disruptions—delivery failures, faulty parts, delays, power outages, theft and government failures—that systematically thwart the production process. To understand how these disruptions affect economic development, we modelled an evolving input–output network in which disruptions spread contagiously among optimizing agents. The key finding was that a poverty trap can emerge: agents adapt to frequent disruptions by producing simpler, less valuable goods, yet disruptions persist. Growing out of poverty requires that agents invest in buffers to disruptions. These buffers rise and then fall as the economy produces more complex goods, a prediction consistent with global patterns of input inventories. Large jumps in economic complexity can backfire. This result suggests why ‘big push’ policies can fail and it underscores the importance of reliability and gradual increases in technological complexity.Brummitt et al. show how supply-chain disruptions can spread contagiously throughout an economy. Adaptations to frequent disruptions can lead to the emergence of a poverty trap. Implications for ‘big push’ economic development policies are discussed.

Collaboration


Dive into the Charles D. Brummitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge