Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles E. Jackson is active.

Publication


Featured researches published by Charles E. Jackson.


Cell | 1995

Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A.

Isabelle Richard; Odile Broux; Valéerie Allamand; Françoise Fougerousse; Nuchanard Chiannilkulchai; Nathalie Bourg; L. Brenguier; Catherine Devaud; Patricia Pasturaud; Carinne Roudaut; Dominique Hillaire; Maria-Rita Passos-Bueno; Mayana Zatz; Jay A. Tischfield; Michel Fardeau; Charles E. Jackson; Daniel Cohen; Jacques S. Beckmann

Limb-girdle muscular dystrophies (LGMDs) are a group of inherited diseases whose genetic etiology has yet to be elucidated. The autosomal recessive forms (LGMD2) constitute a genetically heterogeneous group with LGMD2A mapping to chromosome 15q15.1-q21.1. The gene encoding the muscle-specific calcium-activated neutral protease 3 (CANP3) large subunit is located in this region. This cysteine protease belongs to the family of intracellular calpains. Fifteen nonsense, splice site, frameshift, or missense calpain mutations cosegregate with the disease in LGMD2A families, six of which were found within La Réunion island patients. A digenic inheritance model is proposed to account for the unexpected presence of multiple independent mutations in this small inbred population. Finally, these results demonstrate an enzymatic rather than a structural protein defect causing a muscular dystrophy, a defect that may have regulatory consequences, perhaps in signal transduction.


Nature Genetics | 1996

Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2

David W. Johnson; Jonathan Berg; Melanie A. Baldwin; Carol J. Gallione; Ivonne Marondel; S.-J. Yoon; Timothy T. Stenzel; Marcy C. Speer; Margaret A. Pericak-Vance; A. Diamond; Alan E. Guttmacher; Charles E. Jackson; L. Attisano; Raju Kucherlapati; Mary Porteous; Douglas A. Marchuk

Hereditary haemorrhagic telangiectasia, or Osler–Rendu–Weber (ORW) syndrome, is an autosomal dominant vascular dysplasia. So far, two loci have been demonstrated for ORW. Linkage studies established an ORW locus at chromosome 9q3; endoglin was subsequently identified as the ORW1 gene. A second locus, designated ORW2, was mapped to chromosome 12. Here we report a new 4 cM interval for ORW2 that does not overlap with any previously defined. A 1.38–Mb YAC contig spans the entire interval. It includes the activin receptor like kinase 1 gene (ACVRLK1 or ALKI), a member of the serine–threonine kinase receptor family expressed in endothelium. We report three mutations in the coding sequence of the ALK1 gene in those families which show linkage of the ORW phenotype to chromosome 12. Our data suggest a critical role for ALK1 in the control of blood vessel development or repair.


Nature Genetics | 2002

HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome.

John D. Carpten; Christiane M. Robbins; Andrea Villablanca; Lars Forsberg; S. Presciuttini; Joan E. Bailey-Wilson; William F. Simonds; Elizabeth M. Gillanders; A.M. Kennedy; Jindong Chen; Sunita K. Agarwal; Raman Sood; Mary Pat Jones; Tracy Moses; Carola J. Haven; David Petillo; P.D. Leotlela; B. Harding; D. Cameron; A.A. Pannett; Anders Höög; H. Heath; L.A. James-Newton; Bruce G. Robinson; R.J. Zarbo; Branca Cavaco; W. Wassif; Nancy D. Perrier; I.B. Rosen; U. Kristoffersson

We report here the identification of a gene associated with the hyperparathyroidism–jaw tumor (HPT–JT) syndrome. A single locus associated with HPT–JT (HRPT2) was previously mapped to chromosomal region 1q25–q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT–JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT–JT and in development of some sporadic parathyroid tumors.


Journal of Medical Genetics | 1999

Familial gastric cancer: overview and guidelines for management*

Carlos Caldas; Fátima Carneiro; Henry T. Lynch; Jun Yokota; Georgia L. Wiesner; Steven M. Powell; Frank R. Lewis; David Huntsman; Paul Pharoah; Janusz Jankowski; Patrick MacLeod; Holger Vogelsang; Gisela Keller; Ken G M Park; Frances M. Richards; Eamonn R. Maher; Simon A. Gayther; Carla Oliveira; Nicola Grehan; Derek Wight; Raquel Seruca; Franco Roviello; Bruce A.J. Ponder; Charles E. Jackson

Families with autosomal dominant inherited predisposition to gastric cancer have been described. More recently, germlineE-cadherin/CDH1mutations have been identified in hereditary diffuse gastric cancer kindred. The need to have protocols to manage and counsel these families in the clinic led a group of geneticists, gastroenterologists, surgeons, oncologists, pathologists, and molecular biologists to convene a workshop to produce consensus statements and guidelines for familial gastric cancer. Review of the available cancer pathology from people belonging to families with documented germlineE-cadherin/CDH1mutations confirmed that the gastric cancers were all of the diffuse type. Criteria to define the different types of familial gastric cancer syndromes were agreed. Foremost among these criteria was that review of histopathology should be part of the evaluation of any family with aggregation of gastric cancer cases. Guidelines for genetic testing and counselling in hereditary diffuse gastric cancer were produced. Finally, a proposed strategy for clinical management in families with high penetrance autosomal dominant predisposition to gastric cancer was defined.


The New England Journal of Medicine | 1973

C-Cell Hyperplasia Preceding Medullary Thyroid Carcinoma

Hubert J. Wolfe; Kenneth E. W. Melvin; Sergio J. Cervi-Skinner; Abdul A. Al Saadi; Joseph F. Juliar; Charles E. Jackson; Armen H. Tashjian

Abstract Two sisters at risk for hereditary medullary carcinoma and having small but progressive increases of serum calcitonin in response to calcium infusion underwent thyroidectomy. The thyroid g...


The New England Journal of Medicine | 2001

Early Gastric Cancer in Young, Asymptomatic Carriers of Germ-Line E-Cadherin Mutations

David Huntsman; Fátima Carneiro; Frank R. Lewis; Patrick MacLeod; Allen Hayashi; Kristin G. Monaghan; Raymond Maung; Raquel Seruca; Charles E. Jackson; Carlos Caldas

BACKGROUND Germ-line truncating mutations in the E-cadherin (CDH1) gene have been found in families with hereditary diffuse gastric cancer. These families are characterized by a highly penetrant susceptibility to diffuse gastric cancer with an autosomal dominant pattern of inheritance, predominantly in young persons. We describe genetic screening, surgical management, and pathological findings in young persons with truncating mutations in CDH1 from two unrelated families with hereditary diffuse gastric cancer. METHODS Mutation-specific predictive genetic testing was performed by polymerase-chain-reaction amplification, followed by restriction-enzyme digestion and DNA sequencing in Family 1 and by heteroduplex analysis in Family 2. A total gastrectomy was performed prophylactically in five carriers of mutations who were between 22 and 40 years old. In each case, the entire mucosa of the stomach was extensively sampled for microscopical analysis. RESULTS Superficial infiltrates of malignant signet-ring cells were identified in the surgical samples from all five persons who underwent gastrectomy. These early diffuse gastric cancers were multifocal in three of the five cases, and in one person infiltrates of malignant signet-ring cells were present in 65 of the 140 tissue blocks analyzed, representing in aggregate less than 2 percent of the gastric mucosa. CONCLUSIONS We recommend genetic counseling and consideration of prophylactic gastrectomy in young, asymptomatic carriers of germ-line truncating CDH1 mutations who belong to families with highly penetrant hereditary diffuse gastric cancer.


Journal of Medical Genetics | 2004

Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria

Angela Brooks-Wilson; Pardeep Kaurah; Gianpaolo Suriano; Stephen Leach; Janine Senz; Nicola Grehan; Yaron S N Butterfield; J Jeyes; J Schinas; J Bacani; Megan M. Kelsey; Paulo A. Ferreira; B MacGillivray; Patrick MacLeod; M Micek; James M. Ford; William D. Foulkes; Karlene Australie; C. R. Greenberg; M LaPointe; Catherine Gilpin; S Nikkel; Dawna Gilchrist; R Hughes; Charles E. Jackson; Kristin G. Monaghan; Maria José Oliveira; Raquel Seruca; Steve Gallinger; Carlos Caldas

Background: Mutations in the E-cadherin (CDH1) gene are a well documented cause of hereditary diffuse gastric cancer (HDGC). Development of evidence based guidelines for CDH1 screening for HDGC have been complicated by its rarity, variable penetrance, and lack of founder mutations. Methods: Forty three new gastric cancer (GC) families were ascertained from multiple sources. In 42 of these families at least one gastric cancer was pathologically confirmed to be a diffuse gastric cancer (DGC); the other family had intestinal type gastric cancers. Screening of the entire coding region of the CDH1 gene and all intron/exon boundaries was performed by bi-directional sequencing. Results: Novel mutations were found in 13 of the 42 DGC families (31% overall). Twelve of these mutations occur among the 25 families with multiple cases of gastric cancer and with pathologic confirmation of diffuse gastric cancer phenotype in at least one individual under the age of 50 years. The mutations found include small insertions and deletions, splice site mutations, and three non-conservative amino acid substitutions (A298T, W409R, and R732Q). All three missense mutations conferred loss of E-cadherin function in in vitro assays. Multiple cases of breast cancers including pathologically confirmed lobular breast cancers were observed both in mutation positive and negative families. Conclusion: Germline truncating CDH1 mutations are found in 48% of families with multiple cases of gastric cancer and at least one documented case of DGC in an individual under 50 years of age. We recommend that these criteria be used for selecting families for CDH1 mutational analysis.


Clinical Cancer Research | 2005

Characterization of a Recurrent Germ Line Mutation of the E-Cadherin Gene: Implications for Genetic Testing and Clinical Management

Gianpaolo Suriano; Sandie Yew; Paulo Ferreira; Janine Senz; Pardeep Kaurah; James M. Ford; Teri A. Longacre; Jeffrey A. Norton; Nicki Chun; Sean Young; Maria José Oliveira; Barbara MacGillivray; Arundhati Rao; Dawn Sears; Charles E. Jackson; Jeff Boyd; Cindy J. Yee; Carolyn A. Deters; G. Shashidhar Pai; Lyn S. Hammond; Bobbi McGivern; Diane Medgyesy; Denise Sartz; Banu Arun; Brant K. Oelschlager; Mellisa P. Upton; Whitney Neufeld-Kaiser; Orlando Silva; Talia Donenberg; David A. Kooby

Purpose: To identify germ line CDH1 mutations in hereditary diffuse gastric cancer (HDGC) families and develop guidelines for management of at risk individuals. Experimental Design: We ascertained 31 HDGC previously unreported families, including 10 isolated early-onset diffuse gastric cancer (DGC) cases. Screening for CDH1 germ line mutations was done by denaturing high-performance liquid chromatography and automated DNA sequencing. Results: We identified eight inactivating and one missense CDH1 germ line mutation. The missense mutation conferred in vitro loss of protein function. Two families had the previously described 1003C>T nonsense mutation. Haplotype analysis revealed this to be a recurrent and not a founder mutation. Thirty-six percent (5 of 14) of the families with a documented DGC diagnosed before the age of 50 and other cases of gastric cancer carried CDH1 germ line mutations. Two of 10 isolated cases of DGC in individuals ages <35 years harbored CDH1 germ line mutations. One mutation positive family was ascertained through a family history of lobular breast cancer (LBC) and another through an individual with both DGC and LBC. Occult DGC was identified in five of six prophylactic gastrectomies done on asymptomatic, endoscopically negative 1003C>T mutation carriers. Conclusions: In addition to families with a strong history of early-onset DGC, CDH1 mutation screening should be offered to isolated cases of DGC in individuals ages <35 years and for families with multiple cases of LBC, with any history of DGC or unspecified GI malignancies. Prophylactic gastrectomy is potentially a lifesaving procedure and clinical breast screening is recommended for asymptomatic mutation carriers.


Human Molecular Genetics | 2009

Germline CDH1 deletions in hereditary diffuse gastric cancer families

Carla Oliveira; Janine Senz; Pardeep Kaurah; Hugo Pinheiro; Remo Sanges; Anne Haegert; Giovanni Corso; Jan Schouten; Rebecca C. Fitzgerald; Holger Vogelsang; Gisela Keller; Sarah Dwerryhouse; Donna Grimmer; Suet Feung Chin; Han Kwang Yang; Charles E. Jackson; Raquel Seruca; Franco Roviello; Elia Stupka; Carlos Caldas; David Huntsman

Germline CDH1 point or small frameshift mutations can be identified in 30–50% of hereditary diffuse gastric cancer (HDGC) families. We hypothesized that CDH1 genomic rearrangements would be found in HDGC and identified 160 families with either two gastric cancers in first-degree relatives and with at least one diffuse gastric cancer (DGC) diagnosed before age 50, or three or more DGC in close relatives diagnosed at any age. Sixty-seven carried germline CDH1 point or small frameshift mutations. We screened germline DNA from the 93 mutation negative probands for large genomic rearrangements by Multiplex Ligation-Dependent Probe Amplification. Potential deletions were validated by RT–PCR and breakpoints cloned using a combination of oligo-CGH-arrays and long-range-PCR. In-silico analysis of the CDH1 locus was used to determine a potential mechanism for these rearrangements. Six of 93 (6.5%) previously described mutation negative HDGC probands, from low GC incidence populations (UK and North America), carried genomic deletions (UK and North America). Two families carried an identical deletion spanning 193 593 bp, encompassing the full CDH3 sequence and CDH1 exons 1 and 2. Other deletions affecting exons 1, 2, 15 and/or 16 were identified. The statistically significant over-representation of Alus around breakpoints indicates it as a likely mechanism for these deletions. When all mutations and deletions are considered, the overall frequency of CDH1 alterations in HDGC is ∼46% (73/160). CDH1 large deletions occur in 4% of HDGC families by mechanisms involving mainly non-allelic homologous recombination in Alu repeat sequences. As the finding of pathogenic CDH1 mutations is useful for management of HDGC families, screening for deletions should be offered to at-risk families.


American Journal of Pathology | 1999

Origin of Microsatellite Instability in Gastric Cancer

Kevin C. Halling; Jeffrey F. Harper; Christopher A. Moskaluk; Stephen N. Thibodeau; Gina R. Petroni; Aron S. Yustein; Piero Tosi; Chiara Minacci; Franco Roviello; Paolo Piva; Stanley R. Hamilton; Charles E. Jackson; Steven M. Powell

Microsatellite instability (MSI) is observed in 13-44% of gastric carcinoma. The etiology of MSI in gastric carcinoma has not been clearly defined. To assess the role of mismatch repair in the development of MSI in gastric cancer, expression of hMSH2 and hMLH1 was explored. We examined 117 gastric carcinomas for MSI and observed instability at one or more loci in 19 (16%) of these tumors. Of the 19 tumors with MSI, nine exhibited low-rate MSI (MSI-L) with instability at <17% of loci, whereas the remaining 10 exhibited high-rate MSI (MSI-H) with instability at >33% of loci examined. Immunohistochemical staining for hMLH1 and hMSH2 was performed on eight of the tumors with MSI-H, five with MSI-L, and 15 tumors without MSI. All eight tumors with MSI-H showed loss of staining for either hMLH1 (n = 5) or hMSH2 (n = 3). In contrast, tumors with MSI-L or without MSI all showed normal hMSH2 and hMLH1 protein expression patterns. Moreover, all eight of the tumors with MSI-H also showed instability at BAT-26, whereas none of the MSI-L tumors or tumors without instability showed instability at BAT-26. These findings suggest that the majority of high-level MSI in gastric cancer is associated with defects of the mismatch repair pathway. Although larger studies are needed, BAT-26 appears to be a sensitive and specific marker for the MSI-H phenotype in gastric carcinoma.

Collaboration


Dive into the Charles E. Jackson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lan Jiang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne L. McFarland

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise Fuzzell

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge