Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob L. McCauley is active.

Publication


Featured researches published by Jacob L. McCauley.


Nature Genetics | 2009

Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci

Philip L. De Jager; Xiaoming Jia; Joanne Wang; Paul I. W. de Bakker; Linda Ottoboni; Neelum T. Aggarwal; Laura Piccio; Soumya Raychaudhuri; Dong Tran; Cristin Aubin; Rebeccah Briskin; Susan Romano; Sergio E. Baranzini; Jacob L. McCauley; Margaret A. Pericak-Vance; Jonathan L. Haines; Rachel A. Gibson; Yvonne Naeglin; Bernard M. J. Uitdehaag; Paul M. Matthews; Ludwig Kappos; Chris H. Polman; Wendy L. McArdle; David P. Strachan; Denis A. Evans; Anne H. Cross; Mark J. Daly; Alastair Compston; Stephen Sawcer; Howard L. Weiner

We report the results of a meta-analysis of genome-wide association scans for multiple sclerosis (MS) susceptibility that includes 2,624 subjects with MS and 7,220 control subjects. Replication in an independent set of 2,215 subjects with MS and 2,116 control subjects validates new MS susceptibility loci at TNFRSF1A (combined P = 1.59 × 10−11), IRF8 (P = 3.73 × 10−9) and CD6 (P = 3.79 × 10−9). TNFRSF1A harbors two independent susceptibility alleles: rs1800693 is a common variant with modest effect (odds ratio = 1.2), whereas rs4149584 is a nonsynonymous coding polymorphism of low frequency but with stronger effect (allele frequency = 0.02; odds ratio = 1.6). We also report that the susceptibility allele near IRF8, which encodes a transcription factor known to function in type I interferon signaling, is associated with higher mRNA expression of interferon-response pathway genes in subjects with MS.


Nature Genetics | 2007

Interleukin 7 receptor α chain ( IL7R ) shows allelic and functional association with multiple sclerosis

Simon G. Gregory; Silke Schmidt; Puneet Seth; Jorge R. Oksenberg; John Hart; Angela Prokop; Stacy J. Caillier; Maria Ban; An Goris; Lisa F. Barcellos; Robin Lincoln; Jacob L. McCauley; Stephen Sawcer; D. A. S. Compston; Bénédicte Dubois; Stephen L. Hauser; Mariano A. Garcia-Blanco; Margaret A. Pericak-Vance; Jonathan L. Haines

Multiple sclerosis is a demyelinating neurodegenerative disease with a strong genetic component. Previous genetic risk studies have failed to identify consistently linked regions or genes outside of the major histocompatibility complex on chromosome 6p. We describe allelic association of a polymorphism in the gene encoding the interleukin 7 receptor α chain ( IL7R ) as a significant risk factor for multiple sclerosis in four independent family-based or case-control data sets (overall P = 2.9 × 10−7). Further, the likely causal SNP, rs6897932, located within the alternatively spliced exon 6 of IL7R, has a functional effect on gene expression. The SNP influences the amount of soluble and membrane-bound isoforms of the protein by putatively disrupting an exonic splicing silencer.


Annals of Neurology | 2011

Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci

Nikolaos A. Patsopoulos; Federica Esposito; Joachim Reischl; Stephan Lehr; David Bauer; Jürgen Heubach; Rupert Sandbrink; Christoph Pohl; Gilles Edan; Ludwig Kappos; David Miller; Javier Montalbán; Chris H. Polman; Mark Freedman; Hans-Peter Hartung; Barry G. W. Arnason; Giancarlo Comi; Stuart D. Cook; Massimo Filippi; Douglas S. Goodin; Paul O'Connor; George C. Ebers; Dawn Langdon; Anthony T. Reder; Anthony Traboulsee; Frauke Zipp; Sebastian Schimrigk; Jan Hillert; Melanie Bahlo; David R. Booth

To perform a 1‐stage meta‐analysis of genome‐wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci.


Journal of Experimental Medicine | 2014

Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids

Radha Ramesh; Lina Kozhaya; Kelly McKevitt; Ivana M. Djuretic; Thaddeus Carlson; Maria A. Quintero; Jacob L. McCauley; Maria T. Abreu; Derya Unutmaz; Mark S. Sundrud

Inflammatory T helper 17 cells in humans are distinguished by selective expression of MDR1 and are enriched in the gut of patients with Crohn’s disease.


Annals of Human Genetics | 2009

A Genome-wide Association Study of Autism Reveals a Common Novel Risk Locus at 5p14.1

Deqiong Ma; Daria Salyakina; James M. Jaworski; Ioanna Konidari; Ashley Andersen; Joshua Hoffman; Susan Slifer; Dale J. Hedges; Holly N. Cukier; Anthony J. Griswold; Jacob L. McCauley; Gary W. Beecham; Harry H. Wright; Ruth K. Abramson; Eden R. Martin; John P. Hussman; John R. Gilbert; Michael L. Cuccaro; Jonathan L. Haines; Margaret A. Pericak-Vance

Although autism is one of the most heritable neuropsychiatric disorders, its underlying genetic architecture has largely eluded description. To comprehensively examine the hypothesis that common variation is important in autism, we performed a genome‐wide association study (GWAS) using a discovery dataset of 438 autistic Caucasian families and the Illumina Human 1M beadchip. 96 single nucleotide polymorphisms (SNPs) demonstrated strong association with autism risk (p‐value < 0.0001). The validation of the top 96 SNPs was performed using an independent dataset of 487 Caucasian autism families genotyped on the 550K Illumina BeadChip. A novel region on chromosome 5p14.1 showed significance in both the discovery and validation datasets. Joint analysis of all SNPs in this region identified 8 SNPs having improved p‐values (3.24E‐04 to 3.40E‐06) than in either dataset alone. Our findings demonstrate that in addition to multiple rare variations, part of the complex genetic architecture of autism involves common variation.


Molecular Psychiatry | 2005

Analysis of the RELN gene as a genetic risk factor for autism

David Skaar; Yujun Shao; Jonathan L. Haines; Judith E. Stenger; James M. Jaworski; Eden R. Martin; G. R. DeLong; J H Moore; Jacob L. McCauley; James S. Sutcliffe; Allison E. Ashley-Koch; Michael L. Cuccaro; Susan E. Folstein; John R. Gilbert; Margaret A. Pericak-Vance

Several genome-wide screens have indicated the presence of an autism susceptibility locus within the distal long arm of chromosome 7 (7q). Mapping at 7q22 within this region is the candidate gene reelin (RELN). RELN encodes a signaling protein that plays a pivotal role in the migration of several neuronal cell types and in the development of neural connections. Given these neurodevelopmental functions, recent reports that RELN influences genetic risk for autism are of significant interest. The total data set consists of 218 Caucasian families collected by our group, 85 Caucasian families collected by AGRE, and 68 Caucasian families collected at Tufts University were tested for genetic association of RELN variants to autism. Markers included five single-nucleotide polymorphisms (SNPs) and a repeat in the 5′-untranslated region (5′-UTR). Tests for association in Duke and AGRE families were also performed on four additional SNPs in the genes PSMC2 and ORC5L, which flank RELN. Family-based association analyses (PDT, Geno-PDT, and FBAT) were used to test for association of single-locus markers and multilocus haplotypes with autism. The most significant association identified from this combined data set was for the 5′-UTR repeat (PDT P-value=0.002). These analyses show the potential of RELN as an important contributor to genetic risk in autism.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The role of the CD58 locus in multiple sclerosis

Philip L. De Jager; Clare Baecher-Allan; Lisa M. Maier; Ariel T. Arthur; Linda Ottoboni; Lisa F. Barcellos; Jacob L. McCauley; Stephen Sawcer; An Goris; Janna Saarela; Roman Yelensky; Alkes L. Price; Virpi Leppa; Nick Patterson; Paul I. W. de Bakker; Dong Tran; Cristin Aubin; Susan Pobywajlo; Elizabeth Rossin; Xinli Hu; Charles Ashley; Edwin Choy; John D. Rioux; Margaret A. Pericak-Vance; Adrian J. Ivinson; David R. Booth; Graeme J. Stewart; Aarno Palotie; Leena Peltonen; Bénédicte Dubois

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with demyelination and axonal loss. A whole genome association scan suggested that allelic variants in the CD58 gene region, encoding the costimulatory molecule LFA-3, are associated with risk of developing MS. We now report additional genetic evidence, as well as resequencing and fine mapping of the CD58 locus in patients with MS and control subjects. These efforts identify a CD58 variant that provides further evidence of association with MS (P = 1.1 × 10−6, OR 0.82) and the single protective effect within the CD58 locus is captured by the rs2300747G allele. This protective rs2300747G allele is associated with a dose-dependent increase in CD58 mRNA expression in lymphoblastic cell lines (P = 1.1 × 10−10) and in peripheral blood mononuclear cells from MS subjects (P = 0.0037). This protective effect of enhanced CD58 expression on circulating mononuclear cells in patients with MS is supported by finding that CD58 mRNA expression is higher in MS subjects during clinical remission. Functional investigations suggest a potential mechanism whereby increases in CD58 expression, mediated by the protective allele, up-regulate the expression of transcription factor FoxP3 through engagement of the CD58 receptor, CD2, leading to the enhanced function of CD4+CD25high regulatory T cells that are defective in subjects with MS.


Genes and Immunity | 2009

The expanding genetic overlap between multiple sclerosis and type I diabetes

David R. Booth; Robert Heard; Graeme J. Stewart; An Goris; Rita Dobosi; Bénédicte Dubois; Åslaug R. Lorentzen; Elisabeth G. Celius; Hanne F. Harbo; Anne Spurkland; Tomas Olsson; Ingrid Kockum; Jenny Link; Jan Hillert; Maria Ban; Amie Baker; Stephen Sawcer; Alastair Compston; Tania Mihalova; Richard C. Strange; Clive Hawkins; Gillian Ingram; Neil Robertson; Philip L. De Jager; David A. Hafler; Lisa F. Barcellos; Adrian J. Ivinson; Margaret A. Pericak-Vance; Jorge R. Oksenberg; Stephen L. Hauser

Familial clustering of autoimmune disease is well recognized and raises the possibility that some susceptibility genes may predispose to autoimmunity in general. In light of this observation, it might be expected that some of the variants of established relevance in one autoimmune disease may also be relevant in other related conditions. On the basis of this hypothesis, we tested seven single nucleotide polymorphisms (SNPs) that are known to be associated with type I diabetes in a large multiple sclerosis data set consisting of 2369 trio families, 5737 cases and 10 296 unrelated controls. Two of these seven SNPs showed evidence of association with multiple sclerosis; that is rs12708716 from the CLEC16A gene (P=1.6 × 10−16) and rs763361 from the CD226 gene (P=5.4 × 10−8). These findings thereby identify two additional multiple sclerosis susceptibility genes and lend support to the notion of autoimmune susceptibility genes.


American Journal of Human Genetics | 2010

Evidence for polygenic susceptibility to multiple sclerosis?The shape of things to come

William S. Bush; Stephen Sawcer; P. L. De Jager; Jorge R. Oksenberg; Jacob L. McCauley; Margaret A. Pericak-Vance; Jonathan L. Haines

It is well established that the risk of developing multiple sclerosis is substantially increased in the relatives of affected individuals and that most of this increase is genetically determined. The observed pattern of familial recurrence risk has long suggested that multiple variants are involved, but it has proven difficult to identify individual risk variants and little has been established about the genetic architecture underlying susceptibility. By using data from two independent genome-wide association studies (GWAS), we demonstrate that a substantial proportion of the thousands of variants that individually fail to show statistically significant evidence of association have allele frequencies in cases that are skewed away from the null distribution through the effects of multiple as-yet-unidentified risk loci. The collective effect of 12,627 SNPs with Cochran-Mantel-Haenszel test (p < 0.2) in our discovery GWAS set optimally explains approximately 3% of the variance in MS risk in our independent target GWAS set, estimated by Nagelkerkes pseudo-R(2). This model has a highly significant fit (p = 9.90E-19). These results statistically demonstrate a polygenic component to MS susceptibility and suggest that the risk alleles identified to date represent just the tip of an iceberg of risk variants likely to include hundreds of modest effects and possibly thousands of very small effects.


American Journal of Medical Genetics | 2004

A Linkage Disequilibrium Map of the 1-Mb 15q12 GABAA Receptor Subunit Cluster and Association to Autism

Jacob L. McCauley; Lana M. Olson; Ryan H Delahanty; Taneem Amin; Erika L. Nurmi; Edward L Organ; Michelle M. Jacobs; Susan E. Folstein; Jonathan L. Haines; James S. Sutcliffe

Autism is a complex genetic neuropsychiatric condition characterized by deficits in social interaction and language and patterns of repetitive or stereotyped behaviors and restricted interests. Chromosome 15q11.2‐q13 is a candidate region for autism susceptibility based on observations of chromosomal duplications in a small percentage of affected individuals and findings of linkage and association. We performed linkage disequilibrium (LD) mapping across a 1‐Mb interval containing a cluster of GABAA receptor subunit genes (GABRB3, GABRA5, and GABRG3) which are good positional and functional candidates. Intermarker LD was measured for 59 single nucleotide polymorphism (SNP) markers spanning this region, corresponding to an average marker spacing of 17.7 kb−1. We identified haplotype blocks, and characterized these blocks for common (>5%) haplotypes present in the study population. At this marker resolution, haplotype blocks comprise <50% of the DNA in this region, consistent with a high local recombination rate. Identification of haplotype tag SNPs reduces the overall number of markers necessary to detect all common alleles by only 12%. Individual SNPs and multi‐SNP haplotypes were examined for evidence of allelic association to autism, using a dataset of 123 multiplex autism families. Six markers individually, across GABRB3 and GABRA5, and several haplotypes inclusive of those markers, demonstrated nominally significant association. These results are positively correlated with the position of observed linkage. These studies support the existence of one or more autism risk alleles in the GABAA receptor subunit cluster on 15q12 and have implications for analysis of LD and association in regions with high local recombination. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website athttp://www.interscience.wiley.com/jpages/0148‐7299:1/suppmat/index.html.

Collaboration


Dive into the Jacob L. McCauley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lan Jiang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge