Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles H. Mitch is active.

Publication


Featured researches published by Charles H. Mitch.


Drug Development Research | 1997

Xanomeline: A selective muscarinic agonist for the treatment of Alzheimer's disease

Frank P. Bymaster; Celia A. Whitesitt; Harlan E. Shannon; Neil DeLapp; John S. Ward; David O. Calligaro; Lisa A. Shipley; Judith L. Buelke-Sam; Neil Clayton Bodick; Lars Farde; Malcolm J. Sheardown; Preben H. Olesen; Kristian Tage Hansen; Peter D. Suzdak; Michael D. B. Swedberg; Per Sauerberg; Charles H. Mitch

Xanomeline is a novel muscarinic receptor agonist relatively devoid of parasympathomimetic side effects. Xanomeline had high affinity for muscarinic receptors and much lower affinity for a variety of other neuronal receptors in radioligand binding assays. Functional studies in cell lines transfected with the muscarinic receptor subtypes demonstrated that xanomeline had higher potency and efficacy for m1 and m4 receptors than m2, m3, and m5 receptor subtypes. Similarly, in isolated tissue studies, xanomeline had higher potency and efficacy for M1 receptors in rabbit vas deferens than at M2 receptors in guinea pig atria or M3 receptors in guinea pig bladder. Secretion of soluble amyloid precursor protein from m1 cell lines was potently stimulated by xanomeline. In vivo, xanomeline robustly stimulated phosphoinositide hydrolysis in brain, consistent with m1 agonism. Xanomeline produced modest increases in brain acetylcholine levels and did not produce bradycardia, suggesting little, if any, m2 agonist activity in vivo. Additionally, xanomeline did not induce nonselective cholinergic agonist side effects such as tremor, hypothermia and salivation. In animal behavior studies, xanomeline reduced locomotion and blocked memory deficits that were induced by a muscarinic antagonist in a passive avoidance paradigm. Xanomeline was found to be safe and reasonably well tolerated in safety studies in humans. In a placebo controlled double blind clinical trial of 6 months duration, xanomeline halted cognitive decline in patients with Alzheimers disease. Furthermore, behavioral symptoms associated with Alzheimers disease such as hallucinations, delusions and vocal outbursts were significantly decreased by xanomeline treatment. Additional clinical trials are under way to assess the novel therapeutic effects of xanomeline. Drug Dev. Res. 40:158–170, 1997.


Life Sciences | 1999

POTENTIAL ROLE OF MUSCARINIC RECEPTORS IN SCHIZOPHRENIA

Frank P. Bymaster; Harlan E. Shannon; Kurt Rasmussen; Neil W. DeLapp; John S. Ward; David O. Calligaro; Charles H. Mitch; Celia A. Whitesitt; Thomas S. Ludvigsen; Malcolm J. Sheardown; Michael D. B. Swedberg; Thøger Rasmussen; Preben H. Olesen; Lone Jeppesen; Per Sauerberg; Anders Fink-Jensen

The role of muscarinic receptors in schizophrenia was investigated using the muscarinic agonist PTAC. PTAC was highly selective for muscarinic receptors, was a partial agonist at muscarinic M2/M4 receptors and an antagonist at M1, M3 and M5 receptors. PTAC was highly active in animal models predictive of antipsychotic behavior including inhibition of conditioned avoidance responding in rats and blockade of apomorphine-induced climbing behavior in mice. d-Amphetamine-induced Fos expression in rat nucleus accumbens was inhibited by PTAC, thus directly demonstrating the ability of PTAC to modulate DA activity. In electrophysiological studies in rats, PTAC acutely inhibited the firing of A10 DA cells and after chronic administration decreased the number of spontaneously firing DA cells in the A10 brain area. However, PTAC did not appreciably alter the firing of A9 DA cells. Thus, PTAC appears to have novel antipsychotic-like activity and these data suggest that muscarinic compounds such as PTAC may represent a new class of antipsychotic agents.


European Journal of Pharmacology | 1998

Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane

Frank P. Bymaster; Harlan E. Shannon; Kurt Rasmussen; Neil W. DeLapp; Charles H. Mitch; John S. Ward; David O. Calligaro; Thomas S. Ludvigsen; Malcolm J. Sheardown; Preben H. Olesen; Michael D. B. Swedberg; Per Sauerberg; Anders Fink-Jensen

(5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3 .2.1]octane (PTAC) is a potent muscarinic receptor ligand with high affinity for central muscarinic receptors and no or substantially less affinity for a large number of other receptors or binding sites including dopamine receptors. The ligand exhibits partial agonist effects at muscarinic M2 and M4 receptors and antagonist effects at muscarinic M1, M3 and M5 receptors. PTAC inhibited conditioned avoidance responding, dopamine receptor agonist-induced behavior and D-amphetamine-induced FOS protein M5 expression in the nucleus accumbens without inducing catalepsy, tremor or salivation at pharmacologically relevant doses. The effect of PTAC on conditioned avoidance responding and dopamine receptor agonist-induced behavior was antagonized by the acetylcholine receptor antagonist scopolamine. The compound selectively inhibited dopamine cell firing (acute administration) as well as the number of spontaneously active dopamine cells (chronic administration) in the limbic ventral tegmental area (A10) relative to the non-limbic substantia nigra, pars compacta (A9). The results demonstrate that PTAC exhibits functional dopamine receptor antagonism despite its lack of affinity for the dopamine receptors and indicate that muscarinic receptor partial agonists may be an important new approach in the medical treatment of schizophrenia.


Brain Research | 1998

Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects

Frank P. Bymaster; Petra A. Carter; Steven C. Peters; Wei Zhang; John S. Ward; Charles H. Mitch; David O. Calligaro; Celia A. Whitesitt; Neil DeLapp; Harlan E. Shannon; Karin Rimvall; Lone Jeppesen; Malcolm J. Sheardown; Anders Fink-Jensen; Per Sauerberg

Activation of muscarinic m1 receptors which are coupled to the phosphoinositide (PI) second messenger transduction system is the initial objective of cholinergic replacement therapy in Alzheimers disease. Thus, we evaluated the ability of the selective muscarinic receptor agonist (SMRA) xanomeline to stimulate in vivo phosphoinositide (PI) hydrolysis and compared it to a number of direct acting muscarinic agonists, two cholinesterase inhibitors and a putative m1 agonist/muscarinic m2 antagonist. Using a radiometric technique, it was determined that administration of xanomeline robustly stimulated in vivo PI hydrolysis and the effect was blocked by muscarinic antagonists, demonstrating mediation by muscarinic receptors. The non-selective muscarinic agonists pilocarpine, oxotremorine, RS-86, S-aceclidine, but not the less active isomer R-aceclidine, also effectively stimulated PI hydrolysis in mice. Amongst the putative m1 agonists, thiopilocarpine, hexylthio-TZTP as well as xanomeline effectively stimulated PI hydrolysis, but milameline, WAL 2014, SKB 202026 and PD 142505 did not significantly alter PI hydrolysis. Furthermore, WAL 2014 and SKB 202026 inhibited agonist-induced PI stimulation, suggesting that they act as antagonists at PI-coupled receptors in vivo. The cholinesterase inhibitors, tacrine and physostigmine, and the mixed muscarinic m1 agonist/m2 antagonist LU25-109 did not activate in vivo PI hydrolysis. Xanomeline, hexylthio-TZTP and thiopilocarpine were relatively free of cholinergic side effects, whereas milameline, WAL 2014 and SKB 202026 produced non-selective effects. Therefore, these data demonstrate that xanomeline selectively activates in vivo PI hydrolysis, consistent with activation of biochemical processes involved in memory and cognition and xanomelines beneficial clinical effects on cognition in Alzheimers patients.


Neuropharmacology | 2014

LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders

Linda Rorick-Kehn; Michael A. Statnick; Elizabeth L. Eberle; Jamie H. McKinzie; Steven D. Kahl; Beth M. Forster; Conrad J. Wong; Xia Li; Robert S. Crile; David Shaw; Allison E. Sahr; Benjamin L. Adams; Steven J. Quimby; Nuria Diaz; Alma Jiménez; Concepcion Pedregal; Charles H. Mitch; Kelly L. Knopp; Wesley Anderson; Jeffrey W. Cramer; David L. McKinzie

Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results. Herein, we report for the first time the in vitro and in vivo pharmacological profile of a novel, potent kappa opioid receptor antagonist with excellent selectivity over other receptors and markedly improved drug-like properties over existing research tools. LY2456302 exhibits canonical pharmacokinetic properties that are favorable for clinical development, with rapid absorption (t(max): 1-2 h) and good oral bioavailability (F = 25%). Oral LY2456302 administration selectively and potently occupied central kappa opioid receptors in vivo (ED₅₀ = 0.33 mg/kg), without evidence of mu or delta receptor occupancy at doses up to 30 mg/kg. LY2456302 potently blocked kappa-agonist-mediated analgesia and disruption of prepulse inhibition, without affecting mu-agonist-mediated effects at doses >30-fold higher. Importantly, LY2456302 did not block kappa-agonist-induced analgesia one week after administration, indicating lack of long-lasting pharmacodynamic effects. In contrast to the nonselective opioid antagonist naltrexone, LY2456302 produced antidepressant-like effects in the mouse forced swim test and enhanced the effects of imipramine and citalopram. LY2456302 reduced ethanol self-administration in alcohol-preferring (P) rats and, unlike naltrexone, did not exhibit significant tolerance upon 4 days of repeated dosing. LY2456302 is a centrally-penetrant, potent, kappa-selective antagonist with pharmacokinetic properties favorable for clinical development and activity in animal models predictive of efficacy in mood and addictive disorders.


Life Sciences | 1995

The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from chinese hamster ovary-m1 cells

Kris Eckols; Frank P. Bymaster; Charles H. Mitch; Harlan E. Shannon; John S. Ward; Neil W. DeLapp

The functionally selective M1 agonist xanomeline, which is currently undergoing clinical trials as a therapy for Alzheimers disease, was compared to the muscarinic agonist carbachol for effects on secretion of soluble amyloid precursor protein (APPs) from Chinese hamster ovary cells transfected with the human m1 receptor (CHO-m1). Release of APPs from CHO-m1 cells was increased maximally (4-10 fold) by 100 microM carbachol (EC50 = 11 microM) and by 100 nM xanomeline (EC50 = 10 nM). Stimulation of APPs secretion by xanomeline and carbachol was blocked by preincubation with 1 microM atropine. Carbachol did not stimulate APPs secretion from non-transfected CHO cells. Pilocarpine at 1 mM also increased APPs release. The efficacy of carbachol, xanomeline and pilocarpine for stimulating APPs secretion did not differ significantly. Activation of protein kinase C (PKC) in m1 transfected cell lines by 1 microM phorbol dibutyrate (PDBu) increased APPs release, and this was inhibited 97% by the PKC inhibitor bisindolemalemide. The PKC inhibitor decreased xanomeline and carbachol-stimulated APPs secretion by only 25-30%. These results demonstrate that xanomeline increased APPs release by activation of m1 muscarinic receptors and support the possibility that cholinergic replacement therapy for Alzheimers Disease may reduce amyloid deposition.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Activation of mesolimbic dopamine neurons during novel and daily limited access to palatable food is blocked by the opioid antagonist LY255582.

Allison E. Sahr; Dana Sindelar; Jesline Alexander-Chacko; Brian Eastwood; Charles H. Mitch; Michael A. Statnick

An analog of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine series (LY255582) exhibits high in vitro binding affinity and antagonist potency for the mu-, delta-, and kappa-opioid receptors. In vivo, LY255582 exhibits potent effects in reducing food intake and body weight in several rodent models of obesity. In the present study, we evaluated the effects of LY255582 to prevent the consumption of a highly palatable (HP) diet (a high-fat/high-carbohydrate diet) both when the food was novel and following daily limited access to the HP diet. Additionally, we examined the effects of consumption of the HP diet and of LY255582 treatment on mesolimbic dopamine (DA) signaling by in vivo microdialysis. Consumption of the HP diet increased extracellular DA levels within the nucleus accumbens (NAc) shell. Increased DA in the NAc shell was not related to the quantity of the HP diet consumed, and the DA response did not habituate following daily scheduled access to the HP diet. Interestingly, treatment with LY255582 inhibited consumption of the HP diet and the HP diet-associated increase in NAc shell DA levels. Moreover, the increased HP diet consumption observed following daily limited access to the HP diet was completely prevented by LY255582 treatment. LY255582 may be a useful tool in understanding the neural mechanisms involved in the reinforcement mechanisms regulating food intake.


The Journal of Nuclear Medicine | 2013

Synthesis and Evaluation of 11C-LY2795050 as a κ-Opioid Receptor Antagonist Radiotracer for PET Imaging

Ming-Qiang Zheng; Nabeel Nabulsi; Su Jin Kim; Giampaolo Tomasi; Shu-fei Lin; Charles H. Mitch; Steven J. Quimby; Vanessa N. Barth; Karen Rash; John Joseph Masters; Antonio Navarro; Eric P. Seest; Evan D. Morris; Richard E. Carson; Yiyun Huang

Kappa-opioid receptors (KOR) are believed to be involved in the pathophysiology of depression, anxiety disorders, drug abuse, and alcoholism. To date, only 1 tracer, the KOR agonist 11C-GR103545, has been reported to be able to image KOR in primates. The goal of the present study was to synthesize the selective KOR antagonist 11C-LY2795050 and evaluate its potential as a PET tracer to image KOR in vivo. Methods: The in vitro binding affinity of LY2795050 was measured in radioligand competition binding assays. Ex vivo experiments were conducted using microdosing of the unlabeled ligand in Sprague–Dawley rats and in wild-type and KOR knockout mice, to assess the ligand’s potential as a tracer candidate. Imaging experiments with 11C-LY2795050 in monkeys were performed on the Focus-220 scanner with arterial blood input function measurement. Binding parameters were determined with kinetic modeling analysis. Results: LY2795050 displays full antagonist activity and high binding affinity and selectivity for KOR. Microdosing studies in rodents and ex vivo analysis of tissue concentrations with liquid chromatography–tandem mass spectrometry identified LY2795050 as an appropriate tracer candidate able to provide specific binding signals in vivo. 11C-LY2795050 was prepared in an average yield of 12% and greater than 99% radiochemical purity. In rhesus monkeys, 11C-LY2795050 displayed a moderate rate of peripheral metabolism, with approximately 40% of parent compound remaining at 30 min after injection. In the brain, 11C-LY2795050 displayed fast uptake kinetics (regional activity peak times of <20 min) and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity. Further, specific binding of 11C-LY2795050 was reduced by the selective KOR antagonist LY2456302 in a dose-dependent manner. Conclusion: 11C-LY2795050 displayed favorable pharmacokinetic properties and binding profiles in vivo and therefore is a suitable ligand for imaging the KOR in primates. This newly developed KOR antagonist tracer has since been advanced to PET imaging of KOR in humans and constitutes the first successful KOR antagonist radiotracer.


Life Sciences | 1995

Muscarinic agonists as analgesics. Antinociceptive activity versus M1 activity: SAR of alkylthio-TZTP's and related 1,2,5-thiadiazole analogs

Per Sauerberg; Preben H. Olesen; Malcolm J. Sheardown; Peter D. Suzdak; Harlan E. Shannon; Frank P. Bymaster; David O. Calligaro; Charles H. Mitch; John S. Ward; Michael D. B. Swedberg

Alkylthio-TZTPs (3-(3-alkylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-met hylpyridines) and corresponding azabicyclic analogs were tested for m1 efficacy in cloned human m1 receptors and for antinociceptive activity in the mouse grid shock assay. The m1 (%PI) SAR were distinctly different from the analgesia and the salivation SAR, suggesting that analgesia is mediated by neither m1 nor M3 muscarinic receptors.


Life Sciences | 1997

In vivo pharmacology of butylthio[2.2.2] (LY297802 / NNC11-1053), an orally acting antinociceptive muscarinic agonist

Harlan E. Shannon; Daniel E. Womer; Frank P. Bymaster; David O. Calligaro; Neil DeLapp; Charles H. Mitch; John S. Ward; Celia A. Whitesitt; Michael D. B. Swedberg; Malcolm J. Sheardown; Anders Fink-Jensen; Preben H. Olesen; Karin Rimvall; Per Sauerberg

Butylthio[2.2.2] (LY297802 / NNC11-1053) is a mixed muscarinic cholinergic receptor agonist/antagonist that produces antinociception in mice and rats. As such, butylthio[2.2.2] may have therapeutic utility in the treatment of pain. Butylthio[2.2.2] was fully efficacious in the mouse grid shock, writhing, tail-flick and hot plate tests with ED50 values ranging from 1.5 to 12.2 mg/kg after oral administration. In contrast, the ED50 values for morphine ranged from 7.3 to 72 mg/kg after oral administration. Scopolamine was a competitive antagonist of the antinociceptive effects of butylthio[2.2.2]. Butylthio[2.2.2] did not produce either salivation or tremor at therapeutic doses; rather, there was a 50- to >100-fold separation between therapeutic doses and doses which produced side-effects. Butylthio[2.2.2] had high affinity for muscarinic receptors, but little if any affinity for other neurotransmitter receptors or uptake sites. In isolated tissues, butylthio[2.2.2] was an agonist with high affinity at M1 receptors in rabbit vas deferens, an antagonist at M2 receptors in guinea pig atria as well as an antagonist at M3 receptors in guinea pig urinary bladder. Although it has been suggested that M1 receptors mediate the antinociceptive effects of muscarinic agonists, M1 efficacy is not a requirement for antinociception, and, in vivo, the antinociceptive effects of muscarinic agonists are blocked by the intrathecal administration of pertussis toxin, indicating the involvement of m2 or m4 receptors. Since butylthio[2.2.2] is an M2 antagonist, antinociception is therefore most likely mediated by m4 receptors. Butylthio[2.2.2] is currently undergoing clinical development as a novel analgesic.

Collaboration


Dive into the Charles H. Mitch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge