Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John S. Ward is active.

Publication


Featured researches published by John S. Ward.


Drug Development Research | 1997

Xanomeline: A selective muscarinic agonist for the treatment of Alzheimer's disease

Frank P. Bymaster; Celia A. Whitesitt; Harlan E. Shannon; Neil DeLapp; John S. Ward; David O. Calligaro; Lisa A. Shipley; Judith L. Buelke-Sam; Neil Clayton Bodick; Lars Farde; Malcolm J. Sheardown; Preben H. Olesen; Kristian Tage Hansen; Peter D. Suzdak; Michael D. B. Swedberg; Per Sauerberg; Charles H. Mitch

Xanomeline is a novel muscarinic receptor agonist relatively devoid of parasympathomimetic side effects. Xanomeline had high affinity for muscarinic receptors and much lower affinity for a variety of other neuronal receptors in radioligand binding assays. Functional studies in cell lines transfected with the muscarinic receptor subtypes demonstrated that xanomeline had higher potency and efficacy for m1 and m4 receptors than m2, m3, and m5 receptor subtypes. Similarly, in isolated tissue studies, xanomeline had higher potency and efficacy for M1 receptors in rabbit vas deferens than at M2 receptors in guinea pig atria or M3 receptors in guinea pig bladder. Secretion of soluble amyloid precursor protein from m1 cell lines was potently stimulated by xanomeline. In vivo, xanomeline robustly stimulated phosphoinositide hydrolysis in brain, consistent with m1 agonism. Xanomeline produced modest increases in brain acetylcholine levels and did not produce bradycardia, suggesting little, if any, m2 agonist activity in vivo. Additionally, xanomeline did not induce nonselective cholinergic agonist side effects such as tremor, hypothermia and salivation. In animal behavior studies, xanomeline reduced locomotion and blocked memory deficits that were induced by a muscarinic antagonist in a passive avoidance paradigm. Xanomeline was found to be safe and reasonably well tolerated in safety studies in humans. In a placebo controlled double blind clinical trial of 6 months duration, xanomeline halted cognitive decline in patients with Alzheimers disease. Furthermore, behavioral symptoms associated with Alzheimers disease such as hallucinations, delusions and vocal outbursts were significantly decreased by xanomeline treatment. Additional clinical trials are under way to assess the novel therapeutic effects of xanomeline. Drug Dev. Res. 40:158–170, 1997.


Life Sciences | 1999

POTENTIAL ROLE OF MUSCARINIC RECEPTORS IN SCHIZOPHRENIA

Frank P. Bymaster; Harlan E. Shannon; Kurt Rasmussen; Neil W. DeLapp; John S. Ward; David O. Calligaro; Charles H. Mitch; Celia A. Whitesitt; Thomas S. Ludvigsen; Malcolm J. Sheardown; Michael D. B. Swedberg; Thøger Rasmussen; Preben H. Olesen; Lone Jeppesen; Per Sauerberg; Anders Fink-Jensen

The role of muscarinic receptors in schizophrenia was investigated using the muscarinic agonist PTAC. PTAC was highly selective for muscarinic receptors, was a partial agonist at muscarinic M2/M4 receptors and an antagonist at M1, M3 and M5 receptors. PTAC was highly active in animal models predictive of antipsychotic behavior including inhibition of conditioned avoidance responding in rats and blockade of apomorphine-induced climbing behavior in mice. d-Amphetamine-induced Fos expression in rat nucleus accumbens was inhibited by PTAC, thus directly demonstrating the ability of PTAC to modulate DA activity. In electrophysiological studies in rats, PTAC acutely inhibited the firing of A10 DA cells and after chronic administration decreased the number of spontaneously firing DA cells in the A10 brain area. However, PTAC did not appreciably alter the firing of A9 DA cells. Thus, PTAC appears to have novel antipsychotic-like activity and these data suggest that muscarinic compounds such as PTAC may represent a new class of antipsychotic agents.


European Journal of Pharmacology | 1998

Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane

Frank P. Bymaster; Harlan E. Shannon; Kurt Rasmussen; Neil W. DeLapp; Charles H. Mitch; John S. Ward; David O. Calligaro; Thomas S. Ludvigsen; Malcolm J. Sheardown; Preben H. Olesen; Michael D. B. Swedberg; Per Sauerberg; Anders Fink-Jensen

(5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3 .2.1]octane (PTAC) is a potent muscarinic receptor ligand with high affinity for central muscarinic receptors and no or substantially less affinity for a large number of other receptors or binding sites including dopamine receptors. The ligand exhibits partial agonist effects at muscarinic M2 and M4 receptors and antagonist effects at muscarinic M1, M3 and M5 receptors. PTAC inhibited conditioned avoidance responding, dopamine receptor agonist-induced behavior and D-amphetamine-induced FOS protein M5 expression in the nucleus accumbens without inducing catalepsy, tremor or salivation at pharmacologically relevant doses. The effect of PTAC on conditioned avoidance responding and dopamine receptor agonist-induced behavior was antagonized by the acetylcholine receptor antagonist scopolamine. The compound selectively inhibited dopamine cell firing (acute administration) as well as the number of spontaneously active dopamine cells (chronic administration) in the limbic ventral tegmental area (A10) relative to the non-limbic substantia nigra, pars compacta (A9). The results demonstrate that PTAC exhibits functional dopamine receptor antagonism despite its lack of affinity for the dopamine receptors and indicate that muscarinic receptor partial agonists may be an important new approach in the medical treatment of schizophrenia.


Brain Research | 1998

Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects

Frank P. Bymaster; Petra A. Carter; Steven C. Peters; Wei Zhang; John S. Ward; Charles H. Mitch; David O. Calligaro; Celia A. Whitesitt; Neil DeLapp; Harlan E. Shannon; Karin Rimvall; Lone Jeppesen; Malcolm J. Sheardown; Anders Fink-Jensen; Per Sauerberg

Activation of muscarinic m1 receptors which are coupled to the phosphoinositide (PI) second messenger transduction system is the initial objective of cholinergic replacement therapy in Alzheimers disease. Thus, we evaluated the ability of the selective muscarinic receptor agonist (SMRA) xanomeline to stimulate in vivo phosphoinositide (PI) hydrolysis and compared it to a number of direct acting muscarinic agonists, two cholinesterase inhibitors and a putative m1 agonist/muscarinic m2 antagonist. Using a radiometric technique, it was determined that administration of xanomeline robustly stimulated in vivo PI hydrolysis and the effect was blocked by muscarinic antagonists, demonstrating mediation by muscarinic receptors. The non-selective muscarinic agonists pilocarpine, oxotremorine, RS-86, S-aceclidine, but not the less active isomer R-aceclidine, also effectively stimulated PI hydrolysis in mice. Amongst the putative m1 agonists, thiopilocarpine, hexylthio-TZTP as well as xanomeline effectively stimulated PI hydrolysis, but milameline, WAL 2014, SKB 202026 and PD 142505 did not significantly alter PI hydrolysis. Furthermore, WAL 2014 and SKB 202026 inhibited agonist-induced PI stimulation, suggesting that they act as antagonists at PI-coupled receptors in vivo. The cholinesterase inhibitors, tacrine and physostigmine, and the mixed muscarinic m1 agonist/m2 antagonist LU25-109 did not activate in vivo PI hydrolysis. Xanomeline, hexylthio-TZTP and thiopilocarpine were relatively free of cholinergic side effects, whereas milameline, WAL 2014 and SKB 202026 produced non-selective effects. Therefore, these data demonstrate that xanomeline selectively activates in vivo PI hydrolysis, consistent with activation of biochemical processes involved in memory and cognition and xanomelines beneficial clinical effects on cognition in Alzheimers patients.


Life Sciences | 1995

The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from chinese hamster ovary-m1 cells

Kris Eckols; Frank P. Bymaster; Charles H. Mitch; Harlan E. Shannon; John S. Ward; Neil W. DeLapp

The functionally selective M1 agonist xanomeline, which is currently undergoing clinical trials as a therapy for Alzheimers disease, was compared to the muscarinic agonist carbachol for effects on secretion of soluble amyloid precursor protein (APPs) from Chinese hamster ovary cells transfected with the human m1 receptor (CHO-m1). Release of APPs from CHO-m1 cells was increased maximally (4-10 fold) by 100 microM carbachol (EC50 = 11 microM) and by 100 nM xanomeline (EC50 = 10 nM). Stimulation of APPs secretion by xanomeline and carbachol was blocked by preincubation with 1 microM atropine. Carbachol did not stimulate APPs secretion from non-transfected CHO cells. Pilocarpine at 1 mM also increased APPs release. The efficacy of carbachol, xanomeline and pilocarpine for stimulating APPs secretion did not differ significantly. Activation of protein kinase C (PKC) in m1 transfected cell lines by 1 microM phorbol dibutyrate (PDBu) increased APPs release, and this was inhibited 97% by the PKC inhibitor bisindolemalemide. The PKC inhibitor decreased xanomeline and carbachol-stimulated APPs secretion by only 25-30%. These results demonstrate that xanomeline increased APPs release by activation of m1 muscarinic receptors and support the possibility that cholinergic replacement therapy for Alzheimers Disease may reduce amyloid deposition.


Pharmacology | 1982

Receptor Interactions of Imidazolines

Robert R. Ruffolon; Emily L. Yaden; James E. Waddell; John S. Ward

Clonidine and its methylene-bridged analog, St 1913, were potent α1 and α2 adrenergic agonists in vitro. The activity of each compound at each α-receptor subtype was similar indicating that changing t


European Journal of Pharmacology | 2000

Muscarinic receptor agonists decrease cocaine self-administration rates in drug-naive mice.

Thøger Rasmussen; Per Sauerberg; Erik B. Nielsen; Michael D. B. Swedberg; Christian Thomsen; Malcolm J. Sheardown; Lone Jeppesen; David O. Calligaro; Neil W. DeLapp; Celia A. Whitesitt; John S. Ward; Harlan E. Shannon; Frank P. Bymaster; Anders Fink-Jensen

(5R,6R)-6-(3-Propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[ 3.2.1]octane (PTAC) is a selective muscarinic receptor ligand. The compound exhibits high affinity for central muscarinic receptors with partial agonist mode of action at muscarinic M(2) and M(4) and antagonist mode of action at muscarinic M(1), M(3) and M(5) receptor subtypes. The compound was earlier reported to exhibit functional dopamine receptor antagonism in rodents despite its lack of affinity for dopamine receptors. In the present study, we report that PTAC, as well as the muscarinic receptor agonists pilocarpine and oxotremorine, dose-dependently decreased rates of intravenous self-administration (fixed ratio 1) of the indirect dopamine receptor agonist cocaine in drug naive mice. Similar decreases in cocaine self-administration rates were obtained with the dopamine receptor antagonists olanzapine, clozapine, risperidone, fluphenazine and haloperidol. These findings suggest that compounds with partial muscarinic receptor agonist mode of action may be used in the medical treatment of cocaine abuse.


Schizophrenia Research | 2001

The muscarinic receptor agonist BuTAC, a novel potential antipsychotic, does not impair learning and memory in mouse passive avoidance

Thøger Rasmussen; Anders Fink-Jensen; Per Sauerberg; Michael D. B. Swedberg; Christian Thomsen; Malcolm J. Sheardown; Lone Jeppesen; David O. Calligaro; Neil W. DeLapp; Celia A. Whitesitt; John S. Ward; Harlan E. Shannon; Frank P. Bymaster

(5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane) (BuTAC) is a novel, selective muscarinic receptor ligand with partial agonist mode of action at muscarinic M2 and M4 and antagonist mode of action at M1, M3 and M5 receptor subtypes in cloned cell lines. BuTAC exhibits functional dopamine receptor antagonism despite its lack of affinity for dopamine receptors, and parasympathomimetic effects in mice are produced only at doses well beyond the doses exhibiting the antipsychotic-like effects. In the present study we investigated the effects of BuTAC and the antipsychotic compounds clozapine, sertindole and olanzapine using one trial passive avoidance with mice as a model of learning and memory. Pharmacologically relevant doses of BuTAC and reference antipsychotics were identified, based on inhibition of apomorphine-induced climbing in mice as an assay measuring antidopaminergic potency. When ratios between the minimum effective dose (MED) for impairment of retention in passive avoidance and the MED for inhibition of apomorphine-induced climbing were calculated, BuTAC displayed a high ratio of >10, compared with clozapine (0.3), sertindole (3) and olanzapine (3). These data suggest that BuTAC is a potential novel antipsychotic which may have favourable effects on aspects of learning and memory.


Neuroreport | 1998

Muscarinic agonists exhibit functional dopamine antagonism in unilaterally 6-OHDA lesioned rats.

Anders Fink-Jensen; Peter Kristensen; Harlan E. Shannon; David O. Calligaro; Neil W. DeLapp; Cilia Whitesitt; John S. Ward; Christian Thomsen; Thøger Rasmusseen; Malcolm J. Sheardown; Lone Jeppesen; Per Sauerberg; Frank P. Bymaster

(5R,6R) 6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]oc tane (PTAC) is a selective muscarinic ligand with high affinity for central muscarinic receptors, agonist mode of action at the muscarinic M2 and M4 receptor subtypes and substantially less or no affinity for central dopamine receptors. In the present study PTAC, as well as the muscarinic agonists oxotremorine, RS86 and pilocarpine, inhibited dopamine D1 and D2 receptor agonist induced contralateral rotation in unilaterally 6-OHDA lesioned rats. The dose of SKF 38393 used to induce contralateral rotation also caused an intense Fos protein immunoreactivity in the rat dorsolateral striatum on the lesioned site which was inhibited by PTAC indicating that the inhibition of rotation by PTAC was not due to non-specific peripheral side effects.


Life Sciences | 1995

Muscarinic agonists as analgesics. Antinociceptive activity versus M1 activity: SAR of alkylthio-TZTP's and related 1,2,5-thiadiazole analogs

Per Sauerberg; Preben H. Olesen; Malcolm J. Sheardown; Peter D. Suzdak; Harlan E. Shannon; Frank P. Bymaster; David O. Calligaro; Charles H. Mitch; John S. Ward; Michael D. B. Swedberg

Alkylthio-TZTPs (3-(3-alkylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-met hylpyridines) and corresponding azabicyclic analogs were tested for m1 efficacy in cloned human m1 receptors and for antinociceptive activity in the mouse grid shock assay. The m1 (%PI) SAR were distinctly different from the analgesia and the salivation SAR, suggesting that analgesia is mediated by neither m1 nor M3 muscarinic receptors.

Collaboration


Dive into the John S. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge