Charles H.-T. Wang
University of Aberdeen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles H.-T. Wang.
Classical and Quantum Gravity | 2006
Charles H.-T. Wang; R. Bingham; J. Tito Mendonca
One of the biggest unsolved problems in physics is the unification of quantum mechanics and general relativity. The lack of experimental guidance has made the issue extremely evasive, though various attempts have been made to relate the loss of matter wave coherence to quantum spacetime fluctuations. We present a new approach to the gravitational decoherence near the Planck scale, made possible by the recently discovered conformal structure of canonical gravity. This leads to a gravitational analogue of Brownian motion whose correlation length is given by the Planck length up to a scaling factor. With input from recent matter wave experiments, we show the minimum value of this factor to be well within the expected range for quantum gravity theories. This suggests that the sensitivities of advanced matter wave interferometers may be approaching the fundamental level due to quantum spacetime fluctuations, and that investigating Planck scale physics using matter wave interferometry may become a reality in the near future.
Physical Review D | 2005
Charles H.-T. Wang
We present a parameter-free gauge formulation of general relativity in terms of a new set of real spin connection variables. The theory is constructed by extending the phase space of the recently formulated conformal geometrodynamics for canonical gravity to accommodate a spin gauge description. This leads to a further enlarged set of first class gravitational constraints consisting of a reduced Hamiltonian constraint and the canonical generators for spin gauge and conformorphism transformations. Owing to the incorporated conformal symmetry, the new theory is shown to be free from an ambiguity of the Barbero-Immirzi type.
Classical and Quantum Gravity | 2009
Paolo M. Bonifacio; Charles H.-T. Wang; J. Tito Mendonca; R. Bingham
We investigate the dephasing suffered by a non-relativistic quantum particle within a conformally fluctuating spacetime geometry. Starting from a minimally coupled massive Klein-Gordon field, we derive an effective Schrodinger equation in the non-relativistic limit. The wavefunction couples to gravity through an effective nonlinear potential induced by the conformal fluctuations. The quantum evolution is studied through a Dyson expansion scheme up to second order. We show that only the nonlinear part of the potential can induce dephasing. This happens through an exponential decay of the off-diagonal terms of the particle density matrix. The bath of conformal radiation is modeled in three dimensions and its statistical properties are described in terms of a general power spectral density. Vacuum fluctuations at a low energy domain are investigated by introducing an appropriate power spectral density and a general formula describing the loss of coherence is derived. This depends quadratically on the particle mass and on the inverse cube of a particle-dependent typical cutoff scale. Finally, the possibilities for experimental verification are discussed. It is shown that current interferometry experiments cannot detect such an effect. However this conclusion may improve by using high mass entangled quantum states.
Journal of Micromechanics and Microengineering | 2005
D.Q. Cao; Dongsheng Liu; Charles H.-T. Wang
The nonlinear modelling strategy and simulation of flexible components in micro-electro-mechanical structures are addressed in this paper. A newly developed Cosserat rod element approach is employed to model the dynamic equations of motion for MEMS components which are prone to nonlinear (moderately large amplitude) vibrations. Models constructed using this approach seek to capture the most significant characteristics of a microstructure in a few variables governed by a few ordinary differential equations of motion. For illustration, a resonator that comprises a resonator mass supported by four flexible beams is investigated using the proposed approach. A three-dimensional nonlinear dynamic model with six degrees of freedom is generated for the resonator. Finally, the nonlinear dynamical response of the resonator without external forces and torques has been presented through numerical simulations.
Journal of Plasma Physics | 2013
Marcilio Manuel Dos Santos; Teodora Oniga; Andrew S. Mcleman; Martin E. Caldwell; Charles H.-T. Wang
We propose an experiment for the measurement of gravitational effect on cold atoms by applying a one-dimensional vertically sinusoidal oscillation to the magneto-optical trap, and observe the signature of low quantum energy shift of quantum-bound states as a consequence of gravitational fluctuation. To this end, we present brief details of the experiment on a Bose–Einstein condensate (BEC), and a simplistic calculation of the Gross–Pitaevskii solution using the Thomas–Fermi approximation with focus on the density of the BEC for the time-dependent perturbation. Moreover, we calculate the power induced by quantum gravity on a generic atomic ensemble. We also address the possible challenges for the measurement of the expected results. Finally, we discuss the prospect of further developing this experiment toward measuring the effect of quantum spacetime fluctuations on cold atoms.
Philosophical Transactions of the Royal Society A | 2006
Charles H.-T. Wang
The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero–Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero–Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.
Physical Review D | 2016
Teodora Oniga; Charles H.-T. Wang
T.O. is most grateful for a Carnegie Scholarship. C.W. acknowledges support from the EPSRC GG-Top Project.
Physics Letters B | 2013
Charles H.-T. Wang; A. O. Hodson; A. St. J. Murphy; T. B. Davies; J. T. Mendonça; R. Bingham
We present a framework for nonlinearly coupled scalar–tensor theory of gravity to address both inflation and core-collapse supernova problems. The unified approach is based on a novel dynamical trapping and relaxation of scalar gravity in highly energetic regimes. The new model provides a viable alternative mechanism of inflation free from various issues known to affect previous proposals. Furthermore, it could be related to observable violent astronomical events, specifically by releasing a significant amount of additional gravitational energy during core-collapse supernovae. A recent experiment at CERN relevant for testing this new model is briefly outlined.
Philosophical Transactions of the Royal Society A | 2008
Charles H.-T. Wang
The gauge symmetry inherent in Maxwells electromagnetics has a profound impact on modern physics. Following the successful quantization of electromagnetics and other higher order gauge field theories, the gauge principle has been applied in various forms to quantize gravity. A notable development in this direction is loop quantum gravity based on the spin-gauge treatment. This paper considers a further incorporation of the conformal gauge symmetry in canonical general relativity. This is a new conformal decomposition in that it is applied to simplify recently formulated parameter-free construction of spin-gauge variables for gravity. The resulting framework preserves many main features of the existing canonical framework for loop quantum gravity regarding the spin network representation and Thiemanns regularization. However, the Barbero–Immirzi parameter is converted into the conformal factor as a canonical variable. It behaves like a scalar field but is somehow non-dynamical since the Hamiltonian constraint does not depend on its momentum. The essential steps of the mathematical derivation of this parameter-free framework for the spin-gauge variables of gravity are spelled out. The implications for the loop quantum gravity programme are briefly discussed.
Philosophical Transactions of the Royal Society A | 2005
J. Michael T. Thompson; Charles H.-T. Wang
This article is an overview of the contributions to the Triennial Issue of Phil. Trans. R. Soc. A published in December, 2005, and also plays the role of a Preface. Devoted to the work of young scientists, the issue covers the fields of astronomy and earth science.